Switch to: Citations

Add references

You must login to add references.
  1. Lower Bounds for cutting planes proofs with small coefficients.Maria Bonet, Toniann Pitassi & Ran Raz - 1997 - Journal of Symbolic Logic 62 (3):708-728.
    We consider small-weight Cutting Planes (CP * ) proofs; that is, Cutting Planes (CP) proofs with coefficients up to $\operatorname{Poly}(n)$ . We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP * proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution. We also prove the following (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Lower Bounds for resolution and cutting plane proofs and monotone computations.Pavel Pudlak - 1997 - Journal of Symbolic Logic 62 (3):981-998.
    We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, it implies an exponential lower bound for some arithmetic circuits.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Lower Bounds to the size of constant-depth propositional proofs.Jan Krajíček - 1994 - Journal of Symbolic Logic 59 (1):73-86.
    LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives ¬ and $\bigwedge, \bigvee$. Then for every d ≥ 0 and n ≥ 2, there is a set Td n of depth d sequents of total size O which are refutable in LK by depth d + 1 proof of size exp) but such that every depth d refutation must have the size at least exp). The sets Td n express a weaker form of the pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Discretely ordered modules as a first-order extension of the cutting planes proof system.Jan Krajicek - 1998 - Journal of Symbolic Logic 63 (4):1582-1596.
    We define a first-order extension LK(CP) of the cutting planes proof system CP as the first-order sequent calculus LK whose atomic formulas are CP-inequalities ∑ i a i · x i ≥ b (x i 's variables, a i 's and b constants). We prove an interpolation theorem for LK(CP) yielding as a corollary a conditional lower bound for LK(CP)-proofs. For a subsystem R(CP) of LK(CP), essentially resolution working with clauses formed by CP- inequalities, we prove a monotone interpolation theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Several notes on the power of Gomory–Chvátal cuts.Edward A. Hirsch & Arist Kojevnikov - 2006 - Annals of Pure and Applied Logic 141 (3):429-436.
    We prove that the Cutting Plane proof system based on Gomory–Chvátal cuts polynomially simulates the lift-and-project system with integer coefficients written in unary. The restriction on the coefficients can be omitted when using Krajíček’s cut-free Gentzen-style extension of both systems. We also prove that Tseitin tautologies have short proofs in this extension.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The relative efficiency of propositional proof systems.Stephen A. Cook & Robert A. Reckhow - 1979 - Journal of Symbolic Logic 44 (1):36-50.
    Download  
     
    Export citation  
     
    Bookmark   75 citations