Switch to: Citations

Add references

You must login to add references.
  1. Early Analytic Philosophy – New Perspectives on the Tradition.Sorin Costreie (ed.) - 2016 - Cham, Switzerland: Springer Verlag.
    In this paper I examine the fundamental views on the nature of logical and mathematical truth of both Frege and Carnap. I argue that their positions are much closer than is standardly assumed. I attempt to establish this point on two fronts. First, I argue that Frege is not attempting to defend metaphysical theses. Second, I argue that Carnap, where he does differ from Frege, can be seen to do so because of mathematical results proven in the early twentieth century. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege's Recipe.Roy T. Cook & Philip A. Ebert - 2016 - Journal of Philosophy 113 (7):309-345.
    In this paper, we present a formal recipe that Frege followed in his magnum opus “Grundgesetze der Arithmetik” when formulating his definitions. This recipe is not explicitly mentioned as such by Frege, but we will offer strong reasons to believe that Frege applied it in developing the formal material of Grundgesetze. We then show that a version of Basic Law V plays a fundamental role in Frege’s recipe and, in what follows, we will explicate what exactly this role is and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege: Philosophy of Mathematics. [REVIEW]Charles Parsons - 1996 - Philosophical Review 105 (4):540.
    This work is the long awaited sequel to the author’s classic Frege: Philosophy of Language. But it is not exactly what the author originally planned. He tells us that when he resumed work on the book in the summer of 1989, after a long interruption, he decided to start afresh. The resulting work followed a different plan from the original drafts. The reader does not know what was lost by their abandonment, but clearly much was gained: The present work may (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Hume’s Principle and Axiom V Reconsidered: Critical Reflections on Frege and His Interpreters.Matthias Schirn - 2006 - Synthese 148 (1):171-227.
    In this paper, I shall discuss several topics related to Frege's paradigms of second-order abstraction principles and his logicism. The discussion includes a critical examination of some controversial views put forward mainly by Robin Jeshion, Tyler Burge, Crispin Wright, Richard Heck and John MacFarlane. In the introductory section, I try to shed light on the connection between logical abstraction and logical objects. The second section contains a critical appraisal of Frege's notion of evidence and its interpretation by Jeshion, the introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ueber Begriff und Gegenstand.Gottlob Frege - 1892 - Vierteljahrsschrift Für Wissenschaftliche Philosophie 16 (2):192-205.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Consistent fragments of grundgesetze and the existence of non-logical objects.Kai F. Wehmeier - 1999 - Synthese 121 (3):309-328.
    In this paper, I consider two curious subsystems ofFrege's Grundgesetze der Arithmetik: Richard Heck's predicative fragment H, consisting of schema V together with predicative second-order comprehension (in a language containing a syntactical abstraction operator), and a theory T in monadic second-order logic, consisting of axiom V and 1 1-comprehension (in a language containing anabstraction function). I provide a consistency proof for the latter theory, thereby refuting a version of a conjecture by Heck. It is shown that both Heck and T (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Fregean abstraction, referential indeterminacy and the logical foundations of arithmetic.Matthias Schirn - 2003 - Erkenntnis 59 (2):203 - 232.
    In Die Grundlagen der Arithmetik, Frege attempted to introduce cardinalnumbers as logical objects by means of a second-order abstraction principlewhich is now widely known as ``Hume's Principle'' (HP): The number of Fsis identical with the number of Gs if and only if F and G are equinumerous.The attempt miscarried, because in its role as a contextual definition HP fails tofix uniquely the reference of the cardinality operator ``the number of Fs''. Thisproblem of referential indeterminacy is usually called ``the Julius Caesar (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Concepts, extensions, and Frege's logicist project.Matthias Schirn - 2006 - Mind 115 (460):983-1006.
    Although the notion of logical object plays a key role in Frege's foundational project, it has hardly been analyzed in depth so far. I argue that Marco Ruffino's attempt to fill this gap by establishing a close link between Frege's treatment of expressions of the form ‘the concept F’ and the privileged status Frege assigns to extensions of concepts as logical objects is bound to fail. I argue, in particular, that Frege's principal motive for introducing extensions into his logical theory (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Grundgesetze der arithmetic I §10.Richard Heck - 1999 - Philosophia Mathematica 7 (3):258-292.
    In section 10 of Grundgesetze, Frege confronts an indeterm inacy left by his stipulations regarding his ‘smooth breathing’, from which names of valueranges are formed. Though there has been much discussion of his arguments, it remains unclear what this indeterminacy is; why it bothers Frege; and how he proposes to respond to it. The present paper attempts to answer these questions by reading section 10 as preparatory for the (fallacious) proof, given in section 31, that every expression of Frege's formal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Julius Caesar and Basic Law V.Richard G. Heck - 2005 - Dialectica 59 (2):161–178.
    This paper dates from about 1994: I rediscovered it on my hard drive in the spring of 2002. It represents an early attempt to explore the connections between the Julius Caesar problem and Frege's attitude towards Basic Law V. Most of the issues discussed here are ones treated rather differently in my more recent papers "The Julius Caesar Objection" and "Grundgesetze der Arithmetik I 10". But the treatment here is more accessible, in many ways, providing more context and a better (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the Nature, Status, and Proof of Hume’s Principle in Frege’s Logicist Project.Matthias Schirn - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Cham, Switzerland: Springer Verlag.
    Sections “Introduction: Hume’s Principle, Basic Law V and Cardinal Arithmetic” and “The Julius Caesar Problem in Grundlagen—A Brief Characterization” are peparatory. In Section “Analyticity”, I consider the options that Frege might have had to establish the analyticity of Hume’s Principle, bearing in mind that with its analytic or non-analytic status the intended logical foundation of cardinal arithmetic stands or falls. Section “Thought Identity and Hume’s Principle” is concerned with the two criteria of thought identity that Frege states in 1906 and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • PATRICIA A. BLANCHETTE. Frege's Conception of Logic. Oxford University Press, 2012. ISBN 978-0-19-926925-9 . Pp. xv + 256. [REVIEW]Roy T. Cook - 2014 - Philosophia Mathematica 22 (1):108-120.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege on Quantities and Real Numbers in Consideration of the Theories of Cantor, Russell and Others.Matthias Schirn - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 25-95.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Interpretation of Frege's Philosophy. [REVIEW]Tyler Burge - 1984 - Philosophical Review 93 (3):454-458.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Patricia A. Blanchette. Frege's Conception of Logic. Oxford University Press, 2012. ISBN 978-0-19-926925-9 (hbk). Pp. xv + 256. [REVIEW]Roy T. Cook - 2013 - Philosophia Mathematica (1):nkt029.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege's proof of referentiality.Øystein Linnebo - 2004 - Notre Dame Journal of Formal Logic 45 (2):73-98.
    I present a novel interpretation of Frege’s attempt at Grundgesetze I §§29-31 to prove that every expression of his language has a unique reference. I argue that Frege’s proof is based on a contextual account of reference, similar to but more sophisticated than that enshrined in his famous Context Principle. Although Frege’s proof is incorrect, I argue that the account of reference on which it is based is of potential philosophical value, and I analyze the class of cases to which (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Frege’s Theorem: An Introduction.Richard G. Heck - 1999 - The Harvard Review of Philosophy 7 (1):56-73.
    A brief, non-technical introduction to technical and philosophical aspects of Frege's philosophy of arithmetic. The exposition focuses on Frege's Theorem, which states that the axioms of arithmetic are provable, in second-order logic, from a single non-logical axiom, "Hume's Principle", which itself is: The number of Fs is the same as the number of Gs if, and only if, the Fs and Gs are in one-one correspondence.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)Kleine Schriften. [REVIEW]Michael Resnik - 1968 - Philosophy of Science 35 (4):424-425.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Frege’s Logicism and the Neo-Fregean Project.Matthias Schirn - 2014 - Axiomathes 24 (2):207-243.
    Neo-logicism is, not least in the light of Frege’s logicist programme, an important topic in the current philosophy of mathematics. In this essay, I critically discuss a number of issues that I consider to be relevant for both Frege’s logicism and neo-logicism. I begin with a brief introduction into Wright’s neo-Fregean project and mention the main objections that he faces. In Sect. 2, I discuss the Julius Caesar problem and its possible Fregean and neo-Fregean solution. In Sect. 3, I raise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Grundgesetze der Arithmetik I §§29‒32.Richard G. Heck - 1997 - Notre Dame Journal of Formal Logic 38 (3):437-474.
    Frege's intention in section 31 of Grundgesetze is to show that every well-formed expression in his formal system denotes. But it has been obscure why he wants to do this and how he intends to do it. It is argued here that, in large part, Frege's purpose is to show that the smooth breathing, from which names of value-ranges are formed, denotes; that his proof that his other primitive expressions denote is sound and anticipates Tarski's theory of truth; and that (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Frege on Mathematical Progress.Patricia Blanchette - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Cham, Switzerland: Springer Verlag. pp. 3 - 19.
    Frege claims that mathematical theories are collections of thoughts, and that scientific continuity turns on thought-identity. This essay explores the difficulties posed for this conception of mathematics by the conceptual development canonically involved in mathematical progress. The central difficulties are that mathematical development often involves sufficient conceptual progress that mature versions of theories do not involve easily-recognizable synonyms of their earlier versions, and that the introduction of new elements in the domains of mathematical theories would seem to conflict with Frege’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege On Shared Belief and Total Functions.Patricia A. Blanchette - 2012 - Journal of Philosophy 109 (1-2):9-39.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege’s permutation argument revisited.Kai Frederick Wehmeier & Peter Schroeder-Heister - 2005 - Synthese 147 (1):43-61.
    In Section 10 of Grundgesetze, Volume I, Frege advances a mathematical argument (known as the permutation argument), by means of which he intends to show that an arbitrary value-range may be identified with the True, and any other one with the False, without contradicting any stipulations previously introduced (we shall call this claim the identifiability thesis, following Schroeder-Heister (1987)). As far as we are aware, there is no consensus in the literature as to (i) the proper interpretation of the permutation (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)On Translating Frege's Die Grundlagen der Arithmetik.Matthias Schirn - 2010 - History and Philosophy of Logic 31 (1):47-72.
    In this essay, I critically discuss Dale Jacquette's new English translation of Frege's work Die Grundlagen der Arithmetik as well as his Introduction and Critical Commentary (Frege, G. 2007. The Foundations of Arithmetic. A Logical-Mathematical Investigation into the Concept of Number . Translated with an Introduction and Critical Commentary by Dale Jacquette. New York: Longman. xxxii + 112 pp.). I begin with a short assessment of Frege's book. In sections 2 and 3, I examine several claims that Jacquette makes in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A model-theoretic reconstruction of Frege's permutation argument.Peter Schroeder-Heister - 1987 - Notre Dame Journal of Formal Logic 28 (1):69-79.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Die Grundlagen der Arithmetik. Eine Logisch Mathematische Untersuchung über den Begriff der Zahl. [REVIEW]Matthias Schirn - 1988 - Journal of Symbolic Logic 53 (3):993-999.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Frege's proof of referentiality.Michael D. Resnik - 1986 - In Leila Haaparanta & Jaakko Hintikka (eds.), Frege Synthesized: Essays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 177--195.
    Download  
     
    Export citation  
     
    Bookmark   7 citations