Switch to: Citations

Add references

You must login to add references.
  1. The Medvedev Lattice of Degrees of Difficulty.Andrea Sorbi - 1996 - In S. B. Cooper, T. A. Slaman & S. S. Wainer (eds.), Computability, enumerability, unsolvability: directions in recursion theory. New York: Cambridge University Press. pp. 224--289.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Embeddings into the Medvedev and Muchnik lattices of Π0 1 classes.Stephen Binns & Stephen G. Simpson - 2004 - Archive for Mathematical Logic 43 (3):399-414.
    Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 0 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w . We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Set Theory: An Introduction to Independence Proofs.Kenneth Kunen - 1980 - North-Holland.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • Some remarks on the algebraic structure of the Medvedev lattice.Andrea Sorbi - 1990 - Journal of Symbolic Logic 55 (2):831-853.
    This paper investigates the algebraic structure of the Medvedev lattice M. We prove that M is not a Heyting algebra. We point out some relations between M and the Dyment lattice and the Mucnik lattice. Some properties of the degrees of enumerability are considered. We give also a result on embedding countable distributive lattices in the Medvedev lattice.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On Suborderings of Degrees of Recursive Unsolvability.Gerald E. Sacks - 1961 - Mathematical Logic Quarterly 7 (1-5):46-56.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
    Download  
     
    Export citation  
     
    Bookmark   594 citations