Switch to: References

Add citations

You must login to add citations.
  1. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Is Intuition Based On Understanding?[I thank Jo].Elijah Chudnoff - 2013 - Philosophy and Phenomenological Research 86 (1):42-67.
    According to the most popular non-skeptical views about intuition, intuitions justify beliefs because they are based on understanding. More precisely: if intuiting that p justifies you in believing that p it does so because your intuition is based on your understanding of the proposition that p. The aim of this paper is to raise some challenges for accounts of intuitive justification along these lines. I pursue this project from a non-skeptical perspective. I argue that there are cases in which intuiting (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Metamathematics of Putnam’s Model-Theoretic Arguments.Tim Button - 2011 - Erkenntnis 74 (3):321-349.
    Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted models. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I examine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to metamathematical challenges.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Splitting families and the Noetherian type of β ω ∖ ω.David Milovich - 2008 - Journal of Symbolic Logic 73 (4):1289-1306.
    Extending some results of Malykhin, we prove several independence results about base properties of βω \ ω and its powers, especially the Noetherian type Nt(βω \ ω), the least κ for which βω \ ω has a base that is κ-like with respect to containment. For example, Nt(βω \ ω) is at least s, but can consistently be ω1, c, cT, or strictly between ω1 and c. Nt(βω \ ω) is also consistently less than the additivity of the meager ideal. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Independence and large cardinals.Peter Koellner - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Inner models and large cardinals.Ronald Jensen - 1995 - Bulletin of Symbolic Logic 1 (4):393-407.
    In this paper, we sketch the development of two important themes of modern set theory, both of which can be regarded as growing out of work of Kurt Gödel. We begin with a review of some basic concepts and conventions of set theory.§0. The ordinal numbers were Georg Cantor's deepest contribution to mathematics. After the natural numbers 0, 1, …, n, … comes the first infinite ordinal number ω, followed by ω + 1, ω + 2, …, ω + ω, (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Some Set-Theoretic Reduction Principles.Michael Bärtschi & Gerhard Jäger - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 425-442.
    In this article we study several reduction principles in the context of Simpson’s set theory ATR0S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ATR_{0}^{S}$$\end{document} and Kripke-Platek set theory KP (with infinity). Since ATR0S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ATR_{0}^{S}$$\end{document} is the set-theoretic version of ATR0 there is a direct link to second order arithmetic and the results for reductions over ATR0S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ATR_{0}^{S}$$\end{document} are as expected and more or less (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The iterative solution to paradoxes for propositions.Bruno Whittle - 2022 - Philosophical Studies 180 (5-6):1623-1650.
    This paper argues that we should solve paradoxes for propositions (such as the Russell–Myhill paradox) in essentially the same way that we solve Russellian paradoxes for sets. That is, the standard, iterative approach to sets is extended to include properties, and then the resulting hierarchy of sets and properties is used to construct propositions. Propositions on this account are structured in the sense of mirroring the sentences that express them, and they would seem to serve the needs of philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Is There an Ontology of Infinity?Stathis Livadas - 2020 - Foundations of Science 25 (3):519-540.
    In this article I try to articulate a defensible argumentation against the idea of an ontology of infinity. My position is phenomenologically motivated and in this virtue strongly influenced by the Husserlian reduction of the ontological being to a process of subjective constitution within the immanence of consciousness. However taking into account the historical charge and the depth of the question of infinity over the centuries I also include a brief review of the platonic and aristotelian views and also those (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice function. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Approaching Infinity.Michael Huemer - 2016 - New York: Palgrave Macmillan.
    Approaching Infinity addresses seventeen paradoxes of the infinite, most of which have no generally accepted solutions. The book addresses these paradoxes using a new theory of infinity, which entails that an infinite series is uncompletable when it requires something to possess an infinite intensive magnitude. Along the way, the author addresses the nature of numbers, sets, geometric points, and related matters. The book addresses the need for a theory of infinity, and reviews both old and new theories of infinity. It (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantifier Variance and Indefinite Extensibility.Jared Warren - 2017 - Philosophical Review 126 (1):81-122.
    This essay clarifies quantifier variance and uses it to provide a theory of indefinite extensibility that I call the variance theory of indefinite extensibility. The indefinite extensibility response to the set-theoretic paradoxes sees each argument for paradox as a demonstration that we have come to a different and more expansive understanding of ‘all sets’. But indefinite extensibility is philosophically puzzling: extant accounts are either metasemantically suspect in requiring mysterious mechanisms of domain expansion, or metaphysically suspect in requiring nonstandard assumptions about (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Different similarities.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (7-8):839-859.
    We establish the hierarchy among twelve equivalence relations on the class of relational structures: the equality, the isomorphism, the equimorphism, the full relation, four similarities of structures induced by similarities of their self-embedding monoids and intersections of these equivalence relations. In particular, fixing a language L and a cardinal κ, we consider the interplay between the restrictions of these similarities to the class ModL of all L-structures of size κ. It turns out that, concerning the number of different similarities and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)A formalism for some class of forcing notions.Piotr Koszmider & P. Koszmider - 1992 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38 (1):413-421.
    Download  
     
    Export citation  
     
    Bookmark  
  • Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Iterations of Boolean algebras with measure.Anastasis Kamburelis - 1989 - Archive for Mathematical Logic 29 (1):21-28.
    We consider a classM of Boolean algebras with strictly positive, finitely additive measures. It is shown thatM is closed under iterations with finite support and that the forcing via such an algebra does not destroy the Lebesgue measure structure from the ground model. Also, we deduce a simple characterization of Martin's Axiom reduced to the classM.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On guessing generalized clubs at the successors of regulars.Assaf Rinot - 2011 - Annals of Pure and Applied Logic 162 (7):566-577.
    König, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of a higher Souslin tree from the strong guessing principle.Complementary to the author’s work on the validity of diamond and non-saturation at the successor of singulars, we deal here with a successor of regulars. It is established that even the non-strong guessing principle entails non-saturation, and that, assuming the necessary cardinal arithmetic configuration, entails a diamond-type principle which suffices for the construction of a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reverse mathematics of mf spaces.Carl Mummert - 2006 - Journal of Mathematical Logic 6 (2):203-232.
    This paper gives a formalization of general topology in second-order arithmetic using countably based MF spaces. This formalization is used to study the reverse mathematics of general topology. For each poset P we let MF denote the set of maximal filters on P endowed with the topology generated by {Np | p ∈ P}, where Np = {F ∈ MF | p ∈ F}. We define a countably based MF space to be a space of the form MF for some (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Transfinite numbers in paraconsistent set theory.Zach Weber - 2010 - Review of Symbolic Logic 3 (1):71-92.
    This paper begins an axiomatic development of naive set theoryin a paraconsistent logic. Results divide into two sorts. There is classical recapture, where the main theorems of ordinal and Peano arithmetic are proved, showing that naive set theory can provide a foundation for standard mathematics. Then there are major extensions, including proofs of the famous paradoxes and the axiom of choice (in the form of the well-ordering principle). At the end I indicate how later developments of cardinal numbers will lead (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The mathematical philosophy of Charles Parsons. [REVIEW]J. M. B. Moss - 1985 - British Journal for the Philosophy of Science 36 (4):437-457.
    Download  
     
    Export citation  
     
    Bookmark  
  • Compactness of Loeb spaces.Renling Jin & Saharon Shelah - 1998 - Journal of Symbolic Logic 63 (4):1371-1392.
    In this paper we show that the compactness of a Loeb space depends on its cardinality, the nonstandard universe it belongs to and the underlying model of set theory we live in. In $\S1$ we prove that Loeb spaces are compact under various assumptions, and in $\S2$ we prove that Loeb spaces are not compact under various other assumptions. The results in $\S1$ and $\S2$ give a quite complete answer to a question of D. Ross in [9], [11] and [12].
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Cantor's continuum problem inherently vague?Kai Hauser - 2002 - Philosophia Mathematica 10 (3):257-285.
    I examine various claims to the effect that Cantor's Continuum Hypothesis and other problems of higher set theory are ill-posed questions. The analysis takes into account the viability of the underlying philosophical views and recent mathematical developments.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Expanding the notion of inconsistency in mathematics: the theoretical foundations of mutual inconsistency.Carolin Antos - forthcoming - From Contradiction to Defectiveness to Pluralism in Science: Philosophical and Formal Analyses.
    Download  
     
    Export citation  
     
    Bookmark  
  • Kunen the expositor.Akihiro Kanamori - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual Engineering or Revisionary Conceptual Analysis? The Case of Russell's Metaphilosophy Based on Principia Mathematica's Logic.Landon Elkind - 2021 - Dialogue 60 (3):447-474.
    Conceptual engineers have made hay over the differences of their metaphilosophy from those of conceptual analysts. In this article, I argue that the differences are not as great as conceptual engineers have, perhaps rhetorically, made them seem. That is, conceptual analysts asking ‘What is X?’ questions can do much the same work that conceptual engineers can do with ‘What is X for?’ questions, at least if conceptual analysts self-understand their activity as a revisionary enterprise. I show this with a study (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Robustness, Reliability, and Overdetermination (1981).William C. Wimsatt - 2012 - In Lena Soler (ed.), Characterizing the robustness of science: after the practice turn in philosophy of science. New York: Springer Verlag. pp. 61-78.
    The use of multiple means of determination to “triangulate” on the existence and character of a common phenomenon, object, or result has had a long tradition in science but has seldom been a matter of primary focus. As with many traditions, it is traceable to Aristotle, who valued having multiple explanations of a phenomenon, and it may also be involved in his distinction between special objects of sense and common sensibles. It is implicit though not emphasized in the distinction between (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Leibniz’s syncategorematic infinitesimals II: their existence, their use and their role in the justification of the differential calculus.David Rabouin & Richard T. W. Arthur - 2020 - Archive for History of Exact Sciences 74 (5):401-443.
    In this paper, we endeavour to give a historically accurate presentation of how Leibniz understood his infinitesimals, and how he justified their use. Some authors claim that when Leibniz called them “fictions” in response to the criticisms of the calculus by Rolle and others at the turn of the century, he had in mind a different meaning of “fiction” than in his earlier work, involving a commitment to their existence as non-Archimedean elements of the continuum. Against this, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Conventionalism, Consistency, and Consistency Sentences.Jared Warren - 2015 - Synthese 192 (5):1351-1371.
    Conventionalism about mathematics claims that mathematical truths are true by linguistic convention. This is often spelled out by appealing to facts concerning rules of inference and formal systems, but this leads to a problem: since the incompleteness theorems we’ve known that syntactic notions can be expressed using arithmetical sentences. There is serious prima facie tension here: how can mathematics be a matter of convention and syntax a matter of fact given the arithmetization of syntax? This challenge has been pressed in (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Applications of iterated perfect set forcing.Marcia J. Groszek - 1988 - Annals of Pure and Applied Logic 39 (1):19-53.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Square and non-reflection in the context of Pκλ.Greg Piper - 2006 - Annals of Pure and Applied Logic 142 (1):76-97.
    We define , a square principle in the context of , and prove its consistency relative to ZFC by a directed-closed forcing and hence that it is consistent to have hold when κ is supercompact, whereas □κ is known to fail under this condition. The new principle is then extended to produce a principle with a non-reflection property. Another variation on is also considered, this one based on a family of club subsets of . Finally, a new square principle for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Projective Well-orderings of the Reals.Andrés Eduardo Caicedo & Ralf Schindler - 2006 - Archive for Mathematical Logic 45 (7):783-793.
    If there is no inner model with ω many strong cardinals, then there is a set forcing extension of the universe with a projective well-ordering of the reals.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Background Independence in Quantum Gravity and Forcing Constructions.Jerzy Król - 2004 - Foundations of Physics 34 (3):361-403.
    A general duality connecting the level of a formal theory and of a metatheory is proposed. Because of the role of natural numbers in a metatheory the existence of a dual theory is conjectured, in which the natural numbers become formal in the theory but in formalizing non-formal natural numbers taken from the dual metatheory these numbers become nonstandard. For any formal theory there may be in principle a dual theory. The dual shape of the lattice of projections over separable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ontology, Set Theory, and the Paraphrase Challenge.Jared Warren - 2021 - Journal of Philosophical Logic 50 (6):1231-1248.
    In many ontological debates there is a familiar challenge. Consider a debate over X s. The “small” or anti-X side tries to show that they can paraphrase the pro-X or “big” side’s claims without any loss of expressive power. Typically though, when the big side adds whatever resources the small side used in their paraphrase, the symmetry breaks down. The big side plus small’s resources is a more expressively powerful and thus more theoretically fruitful theory. In this paper, I show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An indeterminate universe of sets.Chris Scambler - 2020 - Synthese 197 (2):545-573.
    In this paper, I develop a view on set-theoretic ontology I call Universe-Indeterminism, according to which there is a unique but indeterminate universe of sets. I argue that Solomon Feferman’s work on semi-constructive set theories can be adapted to this project, and develop a philosophical motivation for a semi-constructive set theory closely based on Feferman’s but tailored to the Universe-Indeterminist’s viewpoint. I also compare the emergent Universe-Indeterminist view to some more familiar views on set-theoretic ontology.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weak covering at large cardinals.Ralf‐Dieter Schindler - 1997 - Mathematical Logic Quarterly 43 (1):22-28.
    We show that weakly compact cardinals are the smallest large cardinals k where k+ < k+ is impossible provided 0# does not exist. We also show that if k+Kc < k+ for some k being weakly compact , then there is a transitive set M with M ⊨ ZFC + “there is a strong cardinal”.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounding and Dominating Number of Families of Functions on ω.Claude Laflamme - 1994 - Mathematical Logic Quarterly 40 (2):207-223.
    We pursue the study of families of functions on the natural numbers, with emphasis here on the bounded families. The situation being more complicated than the unbounded case, we attack the problem by classifying the families according to their bounding and dominating numbers, the traditional scheme for gaps. Many open questions remain.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The mathematical development of set theory from Cantor to Cohen.Akihiro Kanamori - 1996 - Bulletin of Symbolic Logic 2 (1):1-71.
    Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Naturalism and Mathematics.Jeffrey W. Roland - 2015 - In Kelly James Clark (ed.), The Blackwell Companion to Naturalism. Hoboken: Wiley-Blackwell. pp. 289–304.
    In this chapter, I consider some problems with naturalizing mathematics. More specifically, I consider how the two leading kinds of approach to naturalizing mathematics, to wit, Quinean indispensability‐based approaches and Maddy's Second Philosophical approach, seem to run afoul of constraints that any satisfactory naturalistic mathematics must meet. I then suggest that the failure of these kinds of approach to meet the relevant constraints indicates a general problem with naturalistic mathematics meeting these constraints, and thus with the project of naturalizing mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual engineering for mathematical concepts.Fenner Stanley Tanswell - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 61 (8):881-913.
    ABSTRACTIn this paper I investigate how conceptual engineering applies to mathematical concepts in particular. I begin with a discussion of Waismann’s notion of open texture, and compare it to Shapiro’s modern usage of the term. Next I set out the position taken by Lakatos which sees mathematical concepts as dynamic and open to improvement and development, arguing that Waismann’s open texture applies to mathematical concepts too. With the perspective of mathematics as open-textured, I make the case that this allows us (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Versions of Normality and Some Weak Forms of the Axiom of Choice.Paul Howard, Kyriakos Keremedis, Herman Rubin & Jean E. Rubin - 1998 - Mathematical Logic Quarterly 44 (3):367-382.
    We investigate the set theoretical strength of some properties of normality, including Urysohn's Lemma, Tietze-Urysohn Extension Theorem, normality of disjoint unions of normal spaces, and normality of Fσ subsets of normal spaces.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)A Note on Applications of the Löwenheim‐Skolem‐Theorem in General Topology.Ingo Bandlow - 1989 - Mathematical Logic Quarterly 35 (3):283-288.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A dichotomy for the number of ultrapowers.Ilijas Farah & Saharon Shelah - 2010 - Journal of Mathematical Logic 10 (1):45-81.
    We prove a strong dichotomy for the number of ultrapowers of a given model of cardinality ≤ 2ℵ0 associated with nonprincipal ultrafilters on ℕ. They are either all isomorphic, or else there are 22ℵ0 many nonisomorphic ultrapowers. We prove the analogous result for metric structures, including C*-algebras and II1 factors, as well as their relative commutants and include several applications. We also show that the CAF001-algebra [Formula: see text] always has nonisomorphic relative commutants in its ultrapowers associated with nonprincipal ultrafilters (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations