Switch to: Citations

Add references

You must login to add references.
  1. .Jeremy Butterfield & John Earman - 1977
    Download  
     
    Export citation  
     
    Bookmark   367 citations  
  • An Introduction to Quantum Field Theory.Michael Peskin & Dan Schroeder - 1995 - Westview Press.
    An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • The Universe as an Eigenstate: Spacetime Paths and Decoherence. [REVIEW]Ed Seidewitz - 2007 - Foundations of Physics 37 (4-5):572-596.
    This paper describes how the entire universe might be considered an eigenstate determined by classical limiting conditions within it. This description is in the context of an approach in which the path of each relativistic particle in spacetime represents a fine-grained history for that particle, and a path integral represents a coarse-grained history as a superposition of paths meeting some criteria. Since spacetime paths are parametrized by an invariant parameter, not time, histories based on such paths do not evolve in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Off-shell fields and pauli-villars regularization.J. Frastai & L. P. Horwitz - 1995 - Foundations of Physics 25 (10):1495-1510.
    We analyze the correspondence between a five-dimensional U(1)gauge invariant theory and four-dimensional scalar QED, where the fifth dimension (τ)is an invariant parameter of evolution of the manifestly covariant one-particle sector as well as for the full Fock space. The correspondence is represented by the limit in which the width of the photon mass distribution Δs tends to zero and large τ correlations occur. In the limiting procedure, calculation of a twopoint diagram shows that the PauliVillars regularization is intrinsically related to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Haag’s Theorem and its Implications for the Foundations of Quantum Field Theory.John Earman & Doreen Fraser - 2006 - Erkenntnis 64 (3):305 - 344.
    Although the philosophical literature on the foundations of quantum field theory recognizes the importance of Haag’s theorem, it does not provide a clear discussion of the meaning of this theorem. The goal of this paper is to make up for this deficit. In particular, it aims to set out the implications of Haag’s theorem for scattering theory, the interaction picture, the use of non-Fock representations in describing interacting fields, and the choice among the plethora of the unitarily inequivalent representations of (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Green's functions for off-shell electromagnetism and spacelike correlations.M. C. Land & L. P. Horwitz - 1991 - Foundations of Physics 21 (3):299-310.
    The requirement of gauge invariance for the Schwinger-DeWitt equations, interpreted as a manifestly covariant quantum theory for the evolution of a system in spacetime, implies the existence of a five-dimensional pre-Maxwell field on the manifold of spacetime and “proper time” τ. The Maxwell theory is contained in this theory; integration of the field equations over τ restores the Maxwell equations with the usual interpretation of the sources. Following Schwinger's techniques, we study the Green's functions for the five-dimensional hyperbolic field equations (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Quantum mechanics of relativistic spinless particles.John R. Fanchi & R. Eugene Collins - 1978 - Foundations of Physics 8 (11-12):851-877.
    A relativistic one-particle, quantum theory for spin-zero particles is constructed uponL 2(x, ct), resulting in a positive definite spacetime probability density. A generalized Schrödinger equation having a Hermitian HamiltonianH onL 2(x, ct) for an arbitrary four-vector potential is derived. In this formalism the rest mass is an observable and a scalar particle is described by a wave packet that is a superposition of mass states. The requirements of macroscopic causality are shown to be satisfied by the most probable trajectory of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • An Interpretative Introduction to Quantum Field Theory.Paul Teller - 1996 - British Journal for the Philosophy of Science 47 (1):152-153.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Second Quantization of the Stueckelberg Relativistic Quantum Theory and Associated Gauge Fields.L. P. Horwitz & N. Shnerb - 1998 - Foundations of Physics 28 (10):1509-1519.
    The gauge compensation fields induced by the differential operators of the Stueckelberg-Schrödinger equation are discussed, as well as the relation between these fields and the standard Maxwell fields; An action is constructed and the second quantization of the fields carried out using a constraint procedure. The properties of the second quantized matter fields are discussed.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics.David Saad, L. P. Horwitz & R. I. Arshansky - 1989 - Foundations of Physics 19 (10):1125-1149.
    Gauge invariance of a manifestly covariant relativistic quantum theory with evolution according to an invariant time τ implies the existence of five gauge compensation fields, which we shall call pre-Maxwell fields. A Lagrangian which generates the equations of motion for the matter field (coinciding with the Schrödinger type quantum evolution equation) as well as equations, on a five-dimensional manifold, for the gauge fields, is written. It is shown that τ integration of the equations for the pre-Maxwell fields results in the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Consistent Histories of Systems and Measurements in Spacetime.Ed Seidewitz - 2011 - Foundations of Physics 41 (7):1163-1192.
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive “no collapse” interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Parametrized Field Theory.Matej Pavšič - 1998 - Foundations of Physics 28 (9):1453-1464.
    A theory is presented in which a field depends not only on spacetime coordinates xμ, but also on a Lorentz-invariant parameter τ. Such a theory is conceptually and technically simple and manifestly covariant at every step. The generator of evolution and the generator of spacetime translations and Lorentz transformations are obtained in a straightforward way. In the quantized theory the Heisenberg equation of motion is written in a covariant form and is equivalent to the field equation. The equal τ commutator (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativistic many-body systems: Evolution-parameter formalism. [REVIEW]John R. Fanchi & Weldon J. Wilson - 1983 - Foundations of Physics 13 (6):571-605.
    The complexity of the field theoretic methods used for analyzing relativistic bound state problems has forced researchers to look for simpler computational methods. Simpler methods such as the relativistic harmonic oscillator method employed in the description of extended hadrons have been investigated. They are considered phenomenological, however, because they lack a theoretical basis. A probabilistic basis for these methods is presented here in terms of the four-space formulation of relativistic quantum mechanics (FSF). The single-particle FSF is reviewed and its physical (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations