Switch to: References

Add citations

You must login to add citations.
  1. Scientific Modeling Versus Engineering Modeling: Similarities and Dissimilarities.Aboutorab Yaghmaie - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (3):455-474.
    This article aims to answer what I call the “constitution question of engineering modeling”: in virtue of what does an engineering model model its target system? To do so, I will offer a category-theoretic, structuralist account of design, using the olog framework. Drawing on this account, I will conclude that engineering and scientific models are not only cognitively but also representationally indistinguishable. I will finally propose an axiological criterion for distinguishing scientific from engineering modeling.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exchange Forces in Particle Physics.Gregg Jaeger - 2021 - Foundations of Physics 51 (1):1-31.
    The operation of fundamental forces in quantum field theory is explicated here as the exchange of particles, consistently with the standard methodology of particle physics. The particles involved are seen to bear little relation to any classical particle but, rather, comprise unified collections of compresent, conserved quantities indicated by propagators. The exchange particles, which supervene upon quantum fields, are neither more fundamental than fields nor replace them as has often previously been assumed in models of exchange forces. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Quantum Field Theory on Which the Everyday World Supervenes.Sean M. Carroll - 2022 - In Meir Hemmo, Stavros Ioannidis, Orly Shenker & Gal Vishne (eds.), Levels of Reality in Science and Philosophy: Re-Examining the Multi-Level Structure of Reality. Springer. pp. 27-46.
    Effective Field Theory (EFT) is the successful paradigm underlying modern theoretical physics, including the "Core Theory" of the Standard Model of particle physics plus Einstein's general relativity. I will argue that EFT grants us a unique insight: each EFT model comes with a built-in specification of its domain of applicability. Hence, once a model is tested within some domain (of energies and interaction strengths), we can be confident that it will continue to be accurate within that domain. Currently, the Core (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explanations and candidate explanations in physics.Martin King - 2020 - European Journal for Philosophy of Science 10 (1):1-17.
    There has been a growing trend to include non-causal models in accounts of scientific explanation. A worry addressed in this paper is that without a higher threshold for explanation there are no tools for distinguishing between models that provide genuine explanations and those that provide merely potential explanations. To remedy this, a condition is introduced that extends a veridicality requirement to models that are empirically underdetermined, highly-idealised, or otherwise non-causal. This condition is applied to models of electroweak symmetry breaking beyond (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conservation Laws and the Philosophy of Mind: Opening the Black Box, Finding a Mirror.J. Brian Pitts - 2019 - Philosophia 48 (2):673-707.
    Since Leibniz's time, Cartesian mental causation has been criticized for violating the conservation of energy and momentum. Many dualist responses clearly fail. But conservation laws have important neglected features generally undermining the objection. Conservation is _local_, holding first not for the universe, but for everywhere separately. The energy in any volume changes only due to what flows through the boundaries. Constant total energy holds if the global summing-up of local conservation laws converges; it probably doesn't in reality. Energy conservation holds (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Renormalizability, Fundamentality, and a Final Theory: The Role of UV-Completion in the Search for Quantum Gravity.Karen Crowther & Niels Linnemann - 2019 - British Journal for the Philosophy of Science 70 (2):377-406.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity, where novel empirical data are lacking. One principle widely adopted in the search for QG is ultraviolet completion: the idea that a theory should hold up to all possible high energies. We argue— contra standard scientific practice—that UV-completion is poorly motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The non-miraculous success of formal analogies in quantum theories.Doreen Fraser - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    The Higgs model was developed using purely formal analogies to models of superconductivity. This is in contrast to historical case studies such as the development of electromagnetism, which employed physical analogies. As a result, quantum case studies such as the development of the Higgs model carry new lessons for the scientific realism--anti-realism debate. I argue that, by breaking the connection between success and approximate truth, the use of purely formal analogies is a counterexample to two prominent versions of the 'No (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Two Notions of Naturalness.Porter Williams - 2019 - Foundations of Physics 49 (9):1022-1050.
    My aim in this paper is twofold: to distinguish two notions of naturalness employed in beyond the standard model physics and to argue that recognizing this distinction has methodological consequences. One notion of naturalness is an “autonomy of scales” requirement: it prohibits sensitive dependence of an effective field theory’s low-energy observables on precise specification of the theory’s description of cutoff-scale physics. I will argue that considerations from the general structure of effective field theory provide justification for the role this notion (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • In the light of time.Arto Annila - 2009 - Proceedings of Royal Society A 465:1173–1198.
    The concept of time is examined using the second law of thermodynamics that was recently formulated as an equation of motion. According to the statistical notion of increasing entropy, flows of energy diminish differences between energy densities that form space. The flow of energy is identified with the flow of time. The non-Euclidean energy landscape, i.e. the curved space–time, is in evolution when energy is flowing down along gradients and levelling the density differences. The flows along the steepest descents, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why did life emerge?Arto Annila & Annila E. Annila A. - 2008 - International Journal of Astrobiology 7 (3-4):293–300.
    Many mechanisms, functions and structures of life have been unraveled. However, the fundamental driving force that propelled chemical evolution and led to life has remained obscure. The second law of thermodynamics, written as an equation of motion, reveals that elemental abiotic matter evolves from the equilibrium via chemical reactions that couple to external energy towards complex biotic non-equilibrium systems. Each time a new mechanism of energy transduction emerges, e.g., by random variation in syntheses, evolution prompts by punctuation and settles to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory.Doreen Fraser - 2020 - Synthese 197 (7):3027-3063.
    Analogies between classical statistical mechanics and quantum field theory played a pivotal role in the development of renormalization group methods for application in the two theories. This paper focuses on the analogies that informed the application of RG methods in QFT by Kenneth Wilson and collaborators in the early 1970's. The central task that is accomplished is the identification and analysis of the analogical mappings employed. The conclusion is that the analogies in this case study are formal analogies, and not (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A search for new physics in high-mass ditau events in the ATLAS detector.Ryan Reece - 2013 - Dissertation, University of Pennsylvania
    This thesis is a work of experimental physics, a search for new physics with the ATLAS experiment. I post this thesis on the PhilArchive because it includes a pedagogical summary of quantum mechanics and the standard model of particle physics in the combination of chapters 1-2 and appendix A. This was my attempt at the end of my PhD of giving a bird's eye view of the standard model, with a thorough bibliography of the publication trail that lead to its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hamilton’s Principle and Dispositional Essentialism: Friends or Foes?Vassilis Livanios - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (1):59-71.
    Most recently Smart and Thébault revived an almost forgotten debate between Katzav and Ellis on the compatibility of Hamilton’s Principle with Dispositional Essentialism. Katzav’s arguments inter alia aim to show that HP presupposes a kind of metaphysical contingency which is at odds with the basic tenets of DE, and offers explanations of a different type and direction from those given by DE. In this paper I argue that though dispositional essentialists might adequately respond to these arguments, the question about the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A partial elucidation of the gauge principle.Alexandre Guay - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):346-363.
    The elucidation of the gauge principle ‘‘is the most pressing problem in current philosophy of physics’’ said Michael Redhead in 2003. This paper argues for two points that contribute to this elucidation in the context of Yang–Mills theories. (1) Yang–Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is potentially misleading. (2) The essential role of gauge and BRST symmetries is to provide a local field theory that can be quantized and would (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Reductionism and the Irreducibility of Consciousness.John R. Searle - 1997 - In Ned Block, Owen Flanagan & Guven Guzeldere (eds.), The Nature of Consciousness: Philosophical Debates. MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The construction of the Higgs mechanism and the emergence of the electroweak theory.Koray Karaca - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (1):1-16.
    I examine the construction process of the “Higgs mechanism” and its subsequent use by Steven Weinberg to formulate the electroweak theory of elementary particle physics. I characterize the development of the Higgs mechanism as a historical process that was guided through analogies drawn to the theories of solid-state physics and that was progressive through diverse contributions in the sixties from a number of physicists working independently. I also offer a detailed comparative study of the similarities and the differences that exist (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Consistent Histories of Systems and Measurements in Spacetime.Ed Seidewitz - 2011 - Foundations of Physics 41 (7):1163-1192.
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive “no collapse” interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophical Aspects of Quantum Field Theory: II.Laura Ruetsche - 2012 - Philosophy Compass 7 (8):571-584.
    According to a regnant criterion of physical equivalence for quantum theories, a quantum field theory (QFT) typically admits continuously many physically inequivalent realizations. This, the second of a two-part introduction to topics in the philosophy of QFT, continues the investigation of this alarming circumstance. It begins with a brief catalog of quantum field theoretic examples of this non-uniqueness, then presents the basics of the algebraic approach to quantum theories, which discloses a structure common even to ‘physically inequivalent’ realizations of a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Time-dependent symmetries: the link between gauge symmetries and indeterminism.David Wallace - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 163--173.
    Mathematically, gauge theories are extraordinarily rich --- so rich, in fact, that it can become all too easy to lose track of the connections between results, and become lost in a mass of beautiful theorems and properties: indeterminism, constraints, Noether identities, local and global symmetries, and so on. -/- One purpose of this short article is to provide some sort of a guide through the mathematics, to the conceptual core of what is actually going on. Its focus is on the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Haag’s Theorem and its Implications for the Foundations of Quantum Field Theory.John Earman & Doreen Fraser - 2006 - Erkenntnis 64 (3):305 - 344.
    Although the philosophical literature on the foundations of quantum field theory recognizes the importance of Haag’s theorem, it does not provide a clear discussion of the meaning of this theorem. The goal of this paper is to make up for this deficit. In particular, it aims to set out the implications of Haag’s theorem for scattering theory, the interaction picture, the use of non-Fock representations in describing interacting fields, and the choice among the plethora of the unitarily inequivalent representations of (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Eliminating Electron Self-repulsion.Charles T. Sebens - 2023 - Foundations of Physics 53 (4):1-15.
    Problems of self-interaction arise in both classical and quantum field theories. To understand how such problems are to be addressed in a quantum theory of the Dirac and electromagnetic fields (quantum electrodynamics), we can start by analyzing a classical theory of these fields. In such a classical field theory, the electron has a spread-out distribution of charge that avoids some of the problems of self-interaction facing point charge models. However, there remains the problem that the electron will experience self-repulsion. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Don’t forget the boundary problem! How EM field topology can address the overlooked cousin to the binding problem for consciousness.Andrés Gómez-Emilsson & Chris Percy - 2023 - Frontiers in Human Neuroscience 17:1233119.
    The boundary problem is related to the binding problem, part of a family of puzzles and phenomenal experiences that theories of consciousness (ToC) must either explain or eliminate. By comparison with the phenomenal binding problem, the boundary problem has received very little scholarly attention since first framed in detail by Rosengard in 1998, despite discussion by Chalmers in his widely cited 2016 work on the combination problem. However, any ToC that addresses the binding problem must also address the boundary problem. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relativistic QFT from a Bohmian Perspective: A Proof of Concept.Hrvoje Nikolić - 2022 - Foundations of Physics 52 (4):1-18.
    Since Bohmian mechanics is explicitly nonlocal, it is widely believed that it is very hard, if not impossible, to make Bohmian mechanics compatible with relativistic quantum field theory. I explain, in simple terms, that it is not hard at all to construct a Bohmian theory that lacks Lorentz covariance, but makes the same measurable predictions as relativistic QFT. All one has to do is to construct a Bohmian theory that makes the same measurable predictions as QFT in one Lorentz frame, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Localizable Particles in the Classical Limit of Quantum Field Theory.Rory Soiffer, Jonah Librande & Benjamin H. Feintzeig - 2021 - Foundations of Physics 51 (2):1-31.
    A number of arguments purport to show that quantum field theory cannot be given an interpretation in terms of localizable particles. We show, in light of such arguments, that the classical ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document} limit can aid our understanding of the particle content of quantum field theories. In particular, we demonstrate that for the massive Klein–Gordon field, the classical limits of number operators can be understood to encode local information about particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2020 - Synthese 197 (10):4303-4318.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought to influence the metaphysics of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • General Relativity, Mental Causation, and Energy Conservation.J. Brian Pitts - 2022 - Erkenntnis 87 (4):1931-1973.
    The conservation of energy and momentum have been viewed as undermining Cartesian mental causation since the 1690s. Modern discussions of the topic tend to use mid-nineteenth century physics, neglecting both locality and Noether’s theorem and its converse. The relevance of General Relativity has rarely been considered. But a few authors have proposed that the non-localizability of gravitational energy and consequent lack of physically meaningful local conservation laws answers the conservation objection to mental causation: conservation already fails in GR, so there (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Polycratic hierarchies and networks: what simulation-modeling at the LHC can teach us about the epistemology of simulation.Florian J. Boge & Christian Zeitnitz - 2020 - Synthese 199 (1-2):445-480.
    Large scale experiments at CERN’s Large Hadron Collider rely heavily on computer simulations, a fact that has recently caught philosophers’ attention. CSs obviously require appropriate modeling, and it is a common assumption among philosophers that the relevant models can be ordered into hierarchical structures. Focusing on LHC’s ATLAS experiment, we will establish three central results here: with some distinct modifications, individual components of ATLAS’ overall simulation infrastructure can be ordered into hierarchical structures. Hence, to a good degree of approximation, hierarchical (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Motivating dualities.James Read & Thomas Møller-Nielsen - 2020 - Synthese 197 (1):263-291.
    There exists a common view that for theories related by a ‘duality’, dual models typically may be taken ab initio to represent the same physical state of affairs, i.e. to correspond to the same possible world. We question this view, by drawing a parallel with the distinction between ‘interpretational’ and ‘motivational’ approaches to symmetries.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On the nature of the Higgs boson.Damiano Anselmi - 2019 - Mod. Phys. Lett. A 34.
    Several particles are not observed directly, but only through their decay products. We consider the possibility that they might be fakeons, i.e. fake particles, which mediate interactions but are not asymptotic states. A crucial role to determine the true nature of a particle is played by the imaginary parts of the one-loop radiative corrections, which are affected in nontrivial ways by the presence of fakeons in the loop. The knowledge we have today is sufficient to prove that most non directly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the plurality of quantum theories: Quantum theory as a framework and its implications for the quantum measurement problem.David Wallace - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    `Quantum theory' is not a single physical theory but a framework in which many different concrete theories fit. As such, a solution to the quantum measurement problem ought to provide a recipe to interpret each such concrete theory, in a mutually consistent way. But with the exception of the Everett interpretation, the mainextant solutions either try to make sense of the abstract framework as if it were concrete, or else interpret one particular quantum theory under the fiction that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Quantum Theory of Fields.David Wallace - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I give an introduction to the conceptual structure of quantum field theory as it is used in mainstream theoretical physics today, aimed at non-specialists. My main focuses in the article are the common structure of quantum field theory as it is applied in solid-state physics and as it is applied in high-energy physics; the modern theory of renormalisation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Deciphering the algebraic CPT theorem.Noel Swanson - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:106-125.
    The CPT theorem states that any causal, Lorentz-invariant, thermodynamically well-behaved quantum field theory must also be invariant under a reflection symmetry that reverses the direction of time, flips spatial parity, and conjugates charge. Although its physical basis remains obscure, CPT symmetry appears to be necessary in order to unify quantum mechanics with relativity. This paper attempts to decipher the physical reasoning behind proofs of the CPT theorem in algebraic quantum field theory. Ultimately, CPT symmetry is linked to a systematic reversal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Metaphysics of Invariance.David Schroeren - manuscript
    Fundamental physics contains an important link between properties of elementary particles and continuous symmetries of particle systems. For example, properties such as mass and spin are said to be 'associated' with specific continuous symmetries. -/- These 'associations' have played a key role in the discovery of various new particle kinds, but more importantly: they are thought to provide a deep insight into the nature of physical reality. The link between properties and symmetries has been said to call for a radical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2018 - Synthese:1-16.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought to influence the metaphysics of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Renormalizability, fundamentality and a final theory: The role of UV-completion in the search for quantum gravity.Karen Crowther & Niels Linnemann - 2017 - British Journal for the Philosophy of Science 70 (2):377–406.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • QFT, antimatter, and symmetry.David Wallace - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):209-222.
    A systematic analysis is made of the relations between the symmetries of a classical field and the symmetries of the one-particle quantum system that results from quantizing that field in regimes where interactions are weak. The results are applied to gain a greater insight into the phenomenon of antimatter.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • In Defence of Naiveté: The Conceptual Status of Lagrangian Quantum Field Theory.David Wallace - 2006 - Synthese 151 (1):33-80.
    I analyse the conceptual and mathematical foundations of Lagrangian quantum field theory (QFT) (that is, the ‘naive’ (QFT) used in mainstream physics, as opposed to algebraic quantum field theory). The objective is to see whether Lagrangian (QFT) has a sufficiently firm conceptual and mathematical basis to be a legitimate object of foundational study, or whether it is too ill-defined. The analysis covers renormalisation and infinities, inequivalent representations, and the concept of localised states; the conclusion is that Lagrangian QFT (at least (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Decoherence and its Role in the Modern Measurement Problem.David Wallace - unknown
    Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made diffcult by the fact that the "measurement problem", as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)SSB: QSM vs. QFT.Doreen Fraser - 2012 - Philosophy of Science 79:905-916.
    Philosophical analysis of spontaneous symmetry breaking in particle physics has been hindered by the unavailability of rigorous formulations of models in quantum field theory. A strategy for addressing this problem is to use the rigorous models that have been constructed for SSB in quantum statistical mechanics systems as a basis for drawing analogous conclusions about SSB in QFT. Based on an analysis of this strategy as an instance of the application of the same mathematical formalism to different domains and as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophical Aspects of Spontaneous Symmetry Breaking.Giacomo Schwarz - unknown
    This essay expounds the algebraic framework describing general physical theories, within which the phenomenon of spontaneous symmetry breaking makes its appearance in infinite quantum systems. This is in contrast with the fact that a large class of theories - both classical and quantum, finite and infinite - are termed, in the conventional account of classical and quantum mechanics, as exhibiting SSB. This discrepancy will be understood in the light of an interpretation that finds the symmetry breaking to be in some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spontaneous symmetry breaking in the Higgs mechanism.Suzanne van Dam - unknown
    The Higgs mechanism is very powerful: it furnishes a description of the electroweak theory in the Standard Model which has a convincing experimental verification. But although the Higgs mechanism had been applied successfully, the conceptual background is not clear. The Higgs mechanism is often presented as spontaneous breaking of a local gauge symmetry. But a local gauge symmetry is rooted in redundancy of description: gauge transformations connect states that cannot be physically distinguished. A gauge symmetry is therefore not a symmetry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Emergence of particles from bosonic quantum field theory.David Wallace - manuscript
    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Structural Realism, again.Saunders Simon - 2003 - Synthese 136 (1):127-133.
    The paper defends a view of structural realism similar to that of French and Ladyman, although it differs from theirs in an important respect: I do not take indistinguishabiity of particles in quantum mechanics to have the significance they think it has. It also differs from Cao's view of structural realism, criticized in my "Critical Notice: Cao's `The Conceptual Development of 20th Century Field Theories".
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Eschewing Entities: Outlining a Biology Based Form of Structural Realism.Steven French - 2013 - In Vassilios Karakostas & Dennis Dieks (eds.), EPSA11 Perspectives and Foundational Problems in Philosophy of Science. Cham: Springer. pp. 371--381.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mechanics: Non-classical, Non-quantum.Elliott Tammaro - 2012 - Foundations of Physics 42 (2):284-290.
    A non-classical, non-quantum theory, or NCQ, is any fully consistent theory that differs fundamentally from both the corresponding classical and quantum theories, while exhibiting certain features common to both. Such theories are of interest for two primary reasons. Firstly, NCQs arise prominently in semi-classical approximation schemes. Their formal study may yield improved approximation techniques in the near-classical regime. More importantly for the purposes of this note, it may be possible for NCQs to reproduce quantum results over experimentally tested regimes while (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Causality, Measurement, and Elementary Interactions.Edward J. Gillis - 2011 - Foundations of Physics 41 (12):1757-1785.
    Signal causality, the prohibition of superluminal information transmission, is the fundamental property shared by quantum measurement theory and relativity, and it is the key to understanding the connection between nonlocal measurement effects and elementary interactions. To prevent those effects from transmitting information between the generating and observing process, they must be induced by the kinds of entangling interactions that constitute measurements, as implied in the Projection Postulate. They must also be nondeterministic as reflected in the Born Probability Rule. The nondeterminism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eating Goldstone Bosons in a Phase Transition: A Critical Review of Lyre’s Analysis of the Higgs Mechanism. [REVIEW]Adrian Wüthrich - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (2):281-287.
    In this note, I briefly review Lyre's analysis and interpretation of the Higgs mechanism. Contrary to Lyre, I maintain that, on the proper understanding of the term, the Higgs mechanism refers to a physical process in the course of which gauge bosons acquire a mass. Since also Lyre's worries about imaginary masses can be dismissed, a realistic interpretation of the Higgs mechanism seems viable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Interpreting Feynman diagrams as visualized models.Adrian Wüthrich - 2012 - Spontaneous Generations 6 (1):172-181.
    I give a brief introduction to how Feynman diagrams are used. I review arguments to the effect that they are only used as calculation tools and should not be interpreted as representations of physical processes. Against these arguments, I propose to regard Feynman diagrams as visual models that explain, in some respects, how elementary particles interact.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • New Slant on the EPR-Bell Experiment.Peter Evans, Huw Price & Ken Wharton - 2013 - British Journal for the Philosophy of Science 64 (2):297-324.
    The best case for thinking that quantum mechanics is nonlocal rests on Bell's Theorem, and later results of the same kind. However, the correlations characteristic of Einstein–Podolsky–Rosen (EPR)–Bell (EPRB) experiments also arise in familiar cases elsewhere in quantum mechanics (QM), where the two measurements involved are timelike rather than spacelike separated; and in which the correlations are usually assumed to have a local causal explanation, requiring no action-at-a-distance (AAD). It is interesting to ask how this is possible, in the light (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations