Switch to: Citations

Add references

You must login to add references.
  1. Satan, Saint Peter and Saint Petersburg: Decision theory and discontinuity at infinity.Paul Bartha, John Barker & Alan Hájek - 2014 - Synthese 191 (4):629-660.
    We examine a distinctive kind of problem for decision theory, involving what we call discontinuity at infinity. Roughly, it arises when an infinite sequence of choices, each apparently sanctioned by plausible principles, converges to a ‘limit choice’ whose utility is much lower than the limit approached by the utilities of the choices in the sequence. We give examples of this phenomenon, focusing on Arntzenius et al.’s Satan’s apple, and give a general characterization of it. In these examples, repeated dominance reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Higher order numerical differentiation on the Infinity Computer.Yaroslav Sergeyev - 2011 - Optimization Letters 5 (4):575-585.
    There exist many applications where it is necessary to approximate numerically derivatives of a function which is given by a computer procedure. In particular, all the fields of optimization have a special interest in such a kind of information. In this paper, a new way to do this is presented for a new kind of a computer - the Infinity Computer - able to work numerically with finite, infinite, and infinitesimal number. It is proved that the Infinity Computer is able (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bayesianism, Infinite Decisions, and Binding.Frank Arntzenius, Adam Elga & John Hawthorne - 2004 - Mind 113 (450):251 - 283.
    We pose and resolve several vexing decision theoretic puzzles. Some are variants of existing puzzles, such as 'Trumped' (Arntzenius and McCarthy 1997), 'Rouble trouble' (Arntzenius and Barrett 1999), 'The airtight Dutch book' (McGee 1999), and 'The two envelopes puzzle' (Broome 1995). Others are new. A unified resolution of the puzzles shows that Dutch book arguments have no force in infinite cases. It thereby provides evidence that reasonable utility functions may be unbounded and that reasonable credence functions need not be countably (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object of the study) by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A new applied approach for executing computations with infinite and infinitesimal quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Infinite Decision Puzzle.Jeffrey Barrett & Frank Arntzenius - 1999 - Theory and Decision 46 (1):101-103.
    We tell a story where an agent who chooses in such a way as to make the greatest possible profit on each of an infinite series of transactions ends up worse off than an agent who chooses in such a way as to make the least possible profit on each transaction. That is, contrary to what one might suppose, it is not necessarily rational always to choose the option that yields the greatest possible profit on each transaction.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its well-marked numerical character (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems including their (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Tasks and Supertasks.James Thomson - 1954 - Analysis 15 (1):1--13.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Non-standard Analysis.Gert Heinz Müller - 2016 - Princeton University Press.
    Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Infinite Exchange Problems.Michael Scott & Alexander Scott - 2004 - Theory and Decision 57 (4):397-406.
    This paper considers a range of infinite exchange problems, including one recent example discussed by Barrett and Arntzenius, and propose a general taxonomy based on cardinality considerations and the possibility of identifying and tracking the units of exchange.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Arithmetic of Infinity.Yaroslav D. Sergeyev - 2013 - E-book.
    This book presents a new type of arithmetic that allows one to execute arithmetical operations with infinite numbers in the same manner as we are used to do with finite ones. The problem of infinity is considered in a coherent way different from (but not contradicting to) the famous theory founded by Georg Cantor. Surprisingly, the introduced arithmetical operations result in being very simple and are obtained as immediate extensions of the usual addition, multiplication, and division of finite numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Barrett and Arntzenius's Infinite Decision Puzzle.Mark J. Machina - 2000 - Theory and Decision 49 (3):291-295.
    The Barrett and Arntzenius (1999) decision paradox involves unbounded wealth, the relationship between period-wise and sequence-wise dominance, and an infinite-period split-minute setting. A version of their paradox involving bounded (in fact, constant) wealth decisions is presented, along with a version involving no decisions at all. The common source of paradox in Barrett–Arntzenius and these other examples is the indeterminacy of their infinite-period split-minute setting.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Causal Necessity: A Pragmatic Investigation of the Necessity of Laws.C. A. Hooker - 1984 - Noûs 18 (3):517-521.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (1 other version)Theory of Algorithms.A. A. Markov - 1962 - Journal of Symbolic Logic 27 (2):244-244.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.Yaroslav Sergeyev - 2009 - Nonlinear Analysis Series A 71 (12):e1688-e1707.
    The goal of this paper consists of developing a new (more physical and numerical in comparison with standard and non-standard analysis approaches) point of view on Calculus with functions assuming infinite and infinitesimal values. It uses recently introduced infinite and infinitesimal numbers being in accordance with the principle ‘The part is less than the whole’ observed in the physical world around us. These numbers have a strong practical advantage with respect to traditional approaches: they are representable at a new kind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • God’s lottery.Storrs McCall & D. M. Armstrong - 1989 - Analysis 49 (4):223 - 224.
    Download  
     
    Export citation  
     
    Bookmark   21 citations