Switch to: References

Add citations

You must login to add citations.
  1. The weirdest people in the world?Joseph Henrich, Steven J. Heine & Ara Norenzayan - 2010 - Behavioral and Brain Sciences 33 (2-3):61-83.
    Behavioral scientists routinely publish broad claims about human psychology and behavior in the world's top journals based on samples drawn entirely from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies. Researchers – often implicitly – assume that either there is little variation across human populations, or that these “standard subjects” are as representative of the species as any other population. Are these assumptions justified? Here, our review of the comparative database from across the behavioral sciences suggests both that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   773 citations  
  • The evolution of foresight: What is mental time travel, and is it unique to humans?Thomas Suddendorf & Michael C. Corballis - 2007 - Behavioral and Brain Sciences 30 (3):299-313.
    In a dynamic world, mechanisms allowing prediction of future situations can provide a selective advantage. We suggest that memory systems differ in the degree of flexibility they offer for anticipatory behavior and put forward a corresponding taxonomy of prospection. The adaptive advantage of any memory system can only lie in what it contributes for future survival. The most flexible is episodic memory, which we suggest is part of a more general faculty of mental time travel that allows us not only (...)
    Download  
     
    Export citation  
     
    Bookmark   320 citations  
  • Rational Number Representation by the Approximate Number System.Chuyan Qu, Sam Clarke, Francesca Luzzi & Elizabeth Brannon - 2024 - Cognition 250 (105839):1-13.
    The approximate number system (ANS) enables organisms to represent the approximate number of items in an observed collection, quickly and independently of natural language. Recently, it has been proposed that the ANS goes beyond representing natural numbers by extracting and representing rational numbers (Clarke & Beck, 2021a). Prior work demonstrates that adults and children discriminate ratios in an approximate and ratio-dependent manner, consistent with the hallmarks of the ANS. Here, we use a well-known “connectedness illusion” to provide evidence that these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Number as a cognitive technology: Evidence from Pirahã language and cognition.Michael C. Frank, Daniel L. Everett, Evelina Fedorenko & Edward Gibson - 2008 - Cognition 108 (3):819-824.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles.Mathieu Le Corre & Susan Carey - 2007 - Cognition 105 (2):395-438.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia.Manuela Piazza, Andrea Facoetti, Anna Noemi Trussardi, Ilaria Berteletti, Stefano Conte, Daniela Lucangeli, Stanislas Dehaene & Marco Zorzi - 2010 - Cognition 116 (1):33-41.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • The universal density of measurement.Danny Fox & Martin Hackl - 2006 - Linguistics and Philosophy 29 (5):537 - 586.
    The notion of measurement plays a central role in human cognition. We measure people’s height, the weight of physical objects, the length of stretches of time, or the size of various collections of individuals. Measurements of height, weight, and the like are commonly thought of as mappings between objects and dense scales, while measurements of collections of individuals, as implemented for instance in counting, are assumed to involve discrete scales. It is also commonly assumed that natural language makes use of (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Analogue Magnitude Representations: A Philosophical Introduction.Jacob Beck - 2015 - British Journal for the Philosophy of Science 66 (4):829-855.
    Empirical discussions of mental representation appeal to a wide variety of representational kinds. Some of these kinds, such as the sentential representations underlying language use and the pictorial representations of visual imagery, are thoroughly familiar to philosophers. Others have received almost no philosophical attention at all. Included in this latter category are analogue magnitude representations, which enable a wide range of organisms to primitively represent spatial, temporal, numerical, and related magnitudes. This article aims to introduce analogue magnitude representations to a (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Précis of the origin of concepts.Susan Carey - 2011 - Behavioral and Brain Sciences 34 (3):113-124.
    A theory of conceptual development must specify the innate representational primitives, must characterize the ways in which the initial state differs from the adult state, and must characterize the processes through which one is transformed into the other. The Origin of Concepts (henceforth TOOC) defends three theses. With respect to the initial state, the innate stock of primitives is not limited to sensory, perceptual, or sensorimotor representations; rather, there are also innate conceptual representations. With respect to developmental change, conceptual development (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Two Systems for Mindreading?Peter Carruthers - 2016 - Review of Philosophy and Psychology 7 (1):141-162.
    A number of two-systems accounts have been proposed to explain the apparent discrepancy between infants’ early success in nonverbal mindreading tasks, on the one hand, and the failures of children younger than four to pass verbally-mediated false-belief tasks, on the other. Many of these accounts have not been empirically fruitful. This paper focuses, in contrast, on the two-systems proposal put forward by Ian Apperly and colleagues. This has issued in a number of new findings. The present paper shows that the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Bootstrapping of integer concepts: the stronger deviant-interpretation challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Numerical ordering ability mediates the relation between number-sense and arithmetic competence.Ian M. Lyons & Sian L. Beilock - 2011 - Cognition 121 (2):256-261.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Non-symbolic arithmetic in adults and young children.Hilary Barth, Kristen La Mont, Jennifer Lipton, Stanislas Dehaene, Nancy Kanwisher & Elizabeth Spelke - 2006 - Cognition 98 (3):199-222.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Bootstrapping the Mind: Analogical Processes and Symbol Systems.Dedre Gentner - 2010 - Cognitive Science 34 (5):752-775.
    Human cognition is striking in its brilliance and its adaptability. How do we get that way? How do we move from the nearly helpless state of infants to the cognitive proficiency that characterizes adults? In this paper I argue, first, that analogical ability is the key factor in our prodigious capacity, and, second, that possession of a symbol system is crucial to the full expression of analogical ability.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Modeling the approximate number system to quantify the contribution of visual stimulus features.Nicholas K. DeWind, Geoffrey K. Adams, Michael L. Platt & Elizabeth M. Brannon - 2015 - Cognition 142 (C):247-265.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Numerals and neural reuse.Max Jones - 2020 - Synthese 197 (9):3657-3681.
    Menary OpenMIND, MIND Group, Frankfurt am Main, 2015) has argued that the development of our capacities for mathematical cognition can be explained in terms of enculturation. Our ancient systems for perceptually estimating numerical quantities are augmented and transformed by interacting with a culturally-enriched environment that provides scaffolds for the acquisition of cognitive practices, leading to the development of a discrete number system for representing number precisely. Numerals and the practices associated with numeral systems play a significant role in this process. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The meaning of 'most': Semantics, numerosity and psychology.Paul Pietroski, Jeffrey Lidz, Tim Hunter & Justin Halberda - 2009 - Mind and Language 24 (5):554-585.
    The meaning of 'most' can be described in many ways. We offer a framework for distinguishing semantic descriptions, interpreted as psychological hypotheses that go beyond claims about sentential truth conditions, and an experiment that tells against an attractive idea: 'most' is understood in terms of one-to-one correspondence. Adults evaluated 'Most of the dots are yellow', as true or false, on many trials in which yellow dots and blue dots were displayed for 200 ms. Displays manipulated the ease of using a (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Calibrating the mental number line.Véronique Izard & Stanislas Dehaene - 2008 - Cognition 106 (3):1221-1247.
    Human adults are thought to possess two dissociable systems to represent numbers: an approximate quantity system akin to a mental number line, and a verbal system capable of representing numbers exactly. Here, we study the interface between these two systems using an estimation task. Observers were asked to estimate the approximate numerosity of dot arrays. We show that, in the absence of calibration, estimates are largely inaccurate: responses increase monotonically with numerosity, but underestimate the actual numerosity. However, insertion of a (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Bootstrapping in a language of thought: A formal model of numerical concept learning.Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman - 2012 - Cognition 123 (2):199-217.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)The wisdom of nature: an evolutionary heuristic for human enhancement.Nick Bostrom & Anders Sandberg - 2009 - In Nick Bostrom & Julian Savulescu (eds.), Human Enhancement. Oxford University Press. pp. 375--416.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Where our number concepts come from.Susan Carey - 2009 - Journal of Philosophy 106 (4):220-254.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Thinking Materially: Cognition as Extended and Enacted.Karenleigh A. Overmann - 2017 - Journal of Cognition and Culture 17 (3-4):354-373.
    Human cognition is extended and enacted. Drawing the boundaries of cognition to include the resources and attributes of the body and materiality allows an examination of how these components interact with the brain as a system, especially over cultural and evolutionary spans of time. Literacy and numeracy provide examples of multigenerational, incremental change in both psychological functioning and material forms. Though we think materiality, its central role in human cognition is often unappreciated, for reasons that include conceptual distribution over multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children.Daniel C. Hyde, Saeeda Khanum & Elizabeth S. Spelke - 2014 - Cognition 131 (1):92-107.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling.Camilla K. Gilmore, Shannon E. McCarthy & Elizabeth S. Spelke - 2010 - Cognition 115 (3):394-406.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Beyond the Number Domain.Elizabeth M. Brannon Jessica F. Cantlon, Michael L. Platt - 2009 - Trends in Cognitive Sciences 13 (2):83.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Mathematical cognition and enculturation: introduction to the Synthese special issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Numerical Architecture.Eric Mandelbaum - 2013 - Topics in Cognitive Science 5 (1):367-386.
    The idea that there is a “Number Sense” (Dehaene, 1997) or “Core Knowledge” of number ensconced in a modular processing system (Carey, 2009) has gained popularity as the study of numerical cognition has matured. However, these claims are generally made with little, if any, detailed examination of which modular properties are instantiated in numerical processing. In this article, I aim to rectify this situation by detailing the modular properties on display in numerical cognitive processing. In the process, I review literature (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Number nativism.Sam Clarke - 2025 - Philosophy and Phenomenological Research 110 (1):226-252.
    Number Nativism is the view that humans innately represent precise natural numbers. Despite a long and venerable history, it is often considered hopelessly out of touch with the empirical record. I argue that this is a mistake. After clarifying Number Nativism and distancing it from related conjectures, I distinguish three arguments which have been seen to refute the view. I argue that, while popular, two of these arguments miss the mark, and fail to place pressure on Number Nativism. Meanwhile, a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies could potentially shed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An extended mind perspective on natural number representation.Helen De Cruz - 2008 - Philosophical Psychology 21 (4):475 – 490.
    Experimental studies indicate that nonhuman animals and infants represent numerosities above three or four approximately and that their mental number line is logarithmic rather than linear. In contrast, human children from most cultures gradually acquire the capacity to denote exact cardinal values. To explain this difference, I take an extended mind perspective, arguing that the distinctly human ability to use external representations as a complement for internal cognitive operations enables us to represent natural numbers. Reviewing neuroscientific, developmental, and anthropological evidence, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Extending SME to Handle Large‐Scale Cognitive Modeling.Kenneth D. Forbus, Ronald W. Ferguson, Andrew Lovett & Dedre Gentner - 2017 - Cognitive Science 41 (5):1152-1201.
    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Plasticity of human spatial cognition: Spatial language and cognition covary across cultures.Daniel B. M. Haun, Christian J. Rapold, Gabriele Janzen & Stephen C. Levinson - 2011 - Cognition 119 (1):70-80.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Improving arithmetic performance with number sense training: An investigation of underlying mechanism.Joonkoo Park & Elizabeth M. Brannon - 2014 - Cognition 133 (1):188-200.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Beyond Core Knowledge: Natural Geometry.Elizabeth Spelke, Sang Ah Lee & Véronique Izard - 2010 - Cognitive Science 34 (5):863-884.
    For many centuries, philosophers and scientists have pondered the origins and nature of human intuitions about the properties of points, lines, and figures on the Euclidean plane, with most hypothesizing that a system of Euclidean concepts either is innate or is assembled by general learning processes. Recent research from cognitive and developmental psychology, cognitive anthropology, animal cognition, and cognitive neuroscience suggests a different view. Knowledge of geometry may be founded on at least two distinct, evolutionarily ancient, core cognitive systems for (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Interface transparency and the psychosemantics of most.Jeffrey Lidz, Paul Pietroski, Tim Hunter & Justin Halberda - 2011 - Natural Language Semantics 19 (3):227-256.
    This paper proposes an Interface Transparency Thesis concerning how linguistic meanings are related to the cognitive systems that are used to evaluate sentences for truth/falsity: a declarative sentence S is semantically associated with a canonical procedure for determining whether S is true; while this procedure need not be used as a verification strategy, competent speakers are biased towards strategies that directly reflect canonical specifications of truth conditions. Evidence in favor of this hypothesis comes from a psycholinguistic experiment examining adult judgments (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Cognitive Structuralism: Explaining the Regularity of the Natural Numbers Progression.Paula Quinon - 2022 - Review of Philosophy and Psychology 13 (1):127-149.
    According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize (i.e., to assess anexactquantity of the elements in a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Children’s understanding of posterior probability.Vittorio Girotto & Michel Gonzalez - 2008 - Cognition 106 (1):325-344.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Counting and the ontogenetic origins of exact equality.Rose M. Schneider, Erik Brockbank, Roman Feiman & David Barner - 2022 - Cognition 218 (C):104952.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Young Children Intuitively Divide Before They Recognize the Division Symbol.Emily Szkudlarek, Haobai Zhang, Nicholas K. DeWind & Elizabeth M. Brannon - 2022 - Frontiers in Human Neuroscience 16.
    Children bring intuitive arithmetic knowledge to the classroom before formal instruction in mathematics begins. For example, children can use their number sense to add, subtract, compare ratios, and even perform scaling operations that increase or decrease a set of dots by a factor of 2 or 4. However, it is currently unknown whether children can engage in a true division operation before formal mathematical instruction. Here we examined the ability of 6- to 9-year-old children and college students to perform symbolic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Giving the boot to the bootstrap: How not to learn the natural numbers.Lance J. Rips, Jennifer Asmuth & Amber Bloomfield - 2006 - Cognition 101 (3):B51-B60.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Priming reveals differential coding of symbolic and non-symbolic quantities.Chantal Roggeman, Tom Verguts & Wim Fias - 2007 - Cognition 105 (2):380-394.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Effects of Presentation Type and Visual Control in Numerosity Discrimination: Implications for Number Processing?Karolien Smets, Pieter Moors & Bert Reynvoet - 2016 - Frontiers in Psychology 7.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Magnitude processing in non-symbolic stimuli.Tali Leibovich & Avishai Henik - 2013 - Frontiers in Psychology 4.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What’s new: innovation and enculturation of arithmetical practices.Jean-Charles Pelland - 2020 - Synthese 197 (9):3797-3822.
    One of the most important questions in the young field of numerical cognition studies is how humans bridge the gap between the quantity-related content produced by our evolutionarily ancient brains and the precise numerical content associated with numeration systems like Indo-Arabic numerals. This gap problem is the main focus of this paper. The aim here is to evaluate the extent to which cultural factors can help explain how we come to think about numbers beyond the subitizing range. To do this, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The influence of math anxiety on symbolic and non-symbolic magnitude processing.Julia F. Dietrich, Stefan Huber, Korbinian Moeller & Elise Klein - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   10 citations