Switch to: References

Add citations

You must login to add citations.
  1. What’s So Special About Reasoning? Rationality, Belief Updating, and Internalism.Wade Munroe - 2023 - Ergo: An Open Access Journal of Philosophy 10.
    In updating our beliefs on the basis of our background attitudes and evidence we frequently employ objects in our environment to represent pertinent information. For example, we may write our premises and lemmas on a whiteboard to aid in a proof or move the beads of an abacus to assist in a calculation. In both cases, we generate extramental (that is, occurring outside of the mind) representational states, and, at least in the case of the abacus, we operate over these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Radical Enactivist Accounts of Arithmetical Cognition.Markus Pantsar - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    Hutto and Myin have proposed an account of radically enactive (or embodied) cognition (REC) as an explanation of cognitive phenomena, one that does not include mental representations or mental content in basic minds. Recently, Zahidi and Myin have presented an account of arithmetical cognition that is consistent with the REC view. In this paper, I first evaluate the feasibility of that account by focusing on the evolutionarily developed proto-arithmetical abilities and whether empirical data on them support the radical enactivist view. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rational Number Representation by the Approximate Number System.Chuyan Qu, Sam Clarke, Francesca Luzzi & Elizabeth Brannon - 2024 - Cognition 250 (105839):1-13.
    The approximate number system (ANS) enables organisms to represent the approximate number of items in an observed collection, quickly and independently of natural language. Recently, it has been proposed that the ANS goes beyond representing natural numbers by extracting and representing rational numbers (Clarke & Beck, 2021a). Prior work demonstrates that adults and children discriminate ratios in an approximate and ratio-dependent manner, consistent with the hallmarks of the ANS. Here, we use a well-known “connectedness illusion” to provide evidence that these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies could potentially shed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Relationship of Reading Abilities With the Underlying Cognitive Skills of Math: A Dimensional Approach.Luca Bernabini, Paola Bonifacci & Peter F. de Jong - 2021 - Frontiers in Psychology 12.
    Math and reading are related, and math problems are often accompanied by problems in reading. In the present study, we used a dimensional approach and we aimed to assess the relationship of reading and math with the cognitive skills assumed to underlie the development of math. The sample included 97 children from 4th and 5th grades of a primary school. Children were administered measures of reading and math, non-verbal IQ, and various underlying cognitive abilities of math. We also included measures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bootstrapping of integer concepts: the stronger deviant-interpretation challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to store in its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How numerals support new cognitive capacities.Stefan Buijsman - 2020 - Synthese 197 (9):3779-3796.
    Mathematical cognition has become an interesting case study for wider theories of cognition. Menary :1–20, 2015) argues that arithmetical cognition not only shows that internalist theories of cognition are wrong, but that it also shows that the Hypothesis of Extended Cognition is right. I examine this argument in more detail, to see if arithmetical cognition can support such conclusions. Specifically, I look at how the use of numerals extends our arithmetical abilities from quantity-related innate systems to systems that can deal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Violations of Core Knowledge Shape Early Learning.Aimee E. Stahl & Lisa Feigenson - 2019 - Topics in Cognitive Science 11 (1):136-153.
    This paper discusses recent evidence that violations of core knowledge offer special learning opportunities for infants and young children. Children make predictions about the world from the youngest ages. When their fail to match observed data, they show an enhanced drive to seek and retain new information about entities that violated their expectations. Finally, the authors draw comparisons between children and adults, and with other species, to explore how surprise shapes thought more broadly.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Testing the Efficacy of Training Basic Numerical Cognition and Transfer Effects to Improvement in Children’s Math Ability.Narae Kim, Selim Jang & Soohyun Cho - 2018 - Frontiers in Psychology 9.
    The goals of the present study were to test whether (and which) basic numerical abilities can be improved with training and whether training effects transfer to improvement in children’s math achievement. The literature is mixed with evidence that does or does not substantiate the efficacy of training basic numerical ability. In the present study, we developed a child-friendly software named ‘123 Bakery’ which includes four training modules; non-symbolic numerosity comparison, non-symbolic numerosity estimation, approximate arithmetic and symbol-to-numerosity mapping. Fifty-six first graders (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Testimony and Children’s Acquisition of Number Concepts.Helen De Cruz - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 172-186.
    An enduring puzzle in philosophy and developmental psychology is how young children acquire number concepts, in particular the concept of natural number. Most solutions to this problem conceptualize young learners as lone mathematicians who individually reconstruct the successor function and other sophisticated mathematical ideas. In this chapter, I argue for a crucial role of testimony in children’s acquisition of number concepts, both in the transfer of propositional knowledge (e.g., the cardinality concept), and in knowledge-how (e.g., the counting routine).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Approximate Number Processing Skills Contribute to Decision Making Under Objective Risk: Interactions With Executive Functions and Objective Numeracy.Silke M. Mueller & Matthias Brand - 2018 - Frontiers in Psychology 9:364873.
    Research on the cognitive abilities involved in decision making has shown that, under objective risk conditions (i.e., when explicit information about possible outcomes and risks is available), superior decisions are especially predicted by executive functions and exact number processing skills, also referred to as objective numeracy. So far, decision-making research has mainly focused on exact number processing skills, such as performing calculations or transformations of symbolic numbers. There is evidence that such exact numeric skills are based on approximate number processing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Independence of the Grossone-Based Infinity Methodology from Non-standard Analysis and Comments upon Logical Fallacies in Some Texts Asserting the Opposite.Yaroslav D. Sergeyev - 2019 - Foundations of Science 24 (1):153-170.
    This paper considers non-standard analysis and a recently introduced computational methodology based on the notion of ①. The latter approach was developed with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework and in all the situations requiring these notions. Non-standard analysis is a classical purely symbolic technique that works with ultrafilters, external and internal sets, standard and non-standard numbers, etc. In its turn, the ①-based methodology does not use any of these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement.Ariel Starr, Nicholas K. DeWind & Elizabeth M. Brannon - 2017 - Cognition 168 (C):222-233.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Significant Inter-Test Reliability across Approximate Number System Assessments.Nicholas K. DeWind & Elizabeth M. Brannon - 2016 - Frontiers in Psychology 7.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ratio dependence in small number discrimination is affected by the experimental procedure.Christian Agrillo, Laura Piffer, Angelo Bisazza & Brian Butterworth - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The developmental onset of symbolic approximation: beyond nonsymbolic representations, the language of numbers matters.Iro Xenidou-Dervou, Camilla Gilmore, Menno van der Schoot & Ernest C. D. M. van Lieshout - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Analogue Magnitude Representations: A Philosophical Introduction.Jacob Beck - 2015 - British Journal for the Philosophy of Science 66 (4):829-855.
    Empirical discussions of mental representation appeal to a wide variety of representational kinds. Some of these kinds, such as the sentential representations underlying language use and the pictorial representations of visual imagery, are thoroughly familiar to philosophers. Others have received almost no philosophical attention at all. Included in this latter category are analogue magnitude representations, which enable a wide range of organisms to primitively represent spatial, temporal, numerical, and related magnitudes. This article aims to introduce analogue magnitude representations to a (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Modeling the approximate number system to quantify the contribution of visual stimulus features.Nicholas K. DeWind, Geoffrey K. Adams, Michael L. Platt & Elizabeth M. Brannon - 2015 - Cognition 142 (C):247-265.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Experimental investigations of ambiguity: the case of most.Hadas Kotek, Yasutada Sudo & Martin Hackl - 2015 - Natural Language Semantics 23 (2):119-156.
    In the study of natural language quantification, much recent attention has been devoted to the investigation of verification procedures associated with the proportional quantifier most. The aim of these studies is to go beyond the traditional characterization of the semantics of most, which is confined to explicating its truth-functional and presuppositional content as well as its combinatorial properties, as these aspects underdetermine the correct analysis of most. The present paper contributes to this effort by presenting new experimental evidence in support (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical Cognition and its Cultural Dimension.Andrea Bender, Sieghard Beller, Marc Brysbaert, Stanislas Dehaene & Heike Wiese - 2009 - In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society.
    Download  
     
    Export citation  
     
    Bookmark  
  • Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children.Daniel C. Hyde, Saeeda Khanum & Elizabeth S. Spelke - 2014 - Cognition 131 (1):92-107.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia.Manuela Piazza, Andrea Facoetti, Anna Noemi Trussardi, Ilaria Berteletti, Stefano Conte, Daniela Lucangeli, Stanislas Dehaene & Marco Zorzi - 2010 - Cognition 116 (1):33-41.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Number as a cognitive technology: Evidence from Pirahã language and cognition.Michael C. Frank, Daniel L. Everett, Evelina Fedorenko & Edward Gibson - 2008 - Cognition 108 (3):819-824.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Interpretation of percolation in terms of infinity computations.Yaroslav Sergeyev, Dmitri Iudin & Masaschi Hayakawa - 2012 - Applied Mathematics and Computation 218 (16):8099-8111.
    In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach does not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Single-tape and multi-tape Turing machines through the lens of the Grossone methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation and the instrument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sampling from the mental number line: How are approximate number system representations formed?Matthew Inglis & Camilla Gilmore - 2013 - Cognition 129 (1):63-69.
    Nonsymbolic comparison tasks are commonly used to index the acuity of an individual's Approximate Number System (ANS), a cognitive mechanism believed to be involved in the development of number skills. Here we asked whether the time that an individual spends observing numerical stimuli influences the precision of the resultant ANS representations. Contrary to standard computational models of the ANS, we found that the longer the stimulus was displayed, the more precise was the resultant representation. We propose an adaptation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The weirdest people in the world?Joseph Henrich, Steven J. Heine & Ara Norenzayan - 2010 - Behavioral and Brain Sciences 33 (2-3):61-83.
    Behavioral scientists routinely publish broad claims about human psychology and behavior in the world's top journals based on samples drawn entirely from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies. Researchers – often implicitly – assume that either there is little variation across human populations, or that these “standard subjects” are as representative of the species as any other population. Are these assumptions justified? Here, our review of the comparative database from across the behavioral sciences suggests both that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   756 citations  
  • Précis of the origin of concepts.Susan Carey - 2011 - Behavioral and Brain Sciences 34 (3):113-124.
    A theory of conceptual development must specify the innate representational primitives, must characterize the ways in which the initial state differs from the adult state, and must characterize the processes through which one is transformed into the other. The Origin of Concepts (henceforth TOOC) defends three theses. With respect to the initial state, the innate stock of primitives is not limited to sensory, perceptual, or sensorimotor representations; rather, there are also innate conceptual representations. With respect to developmental change, conceptual development (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Working Memory in Nonsymbolic Approximate Arithmetic Processing: A Dual‐Task Study With Preschoolers.Iro Xenidou‐Dervou, Ernest C. D. M. Lieshout & Menno Schoot - 2014 - Cognitive Science 38 (1):101-127.
    Preschool children have been proven to possess nonsymbolic approximate arithmetic skills before learning how to manipulate symbolic math and thus before any formal math instruction. It has been assumed that nonsymbolic approximate math tasks necessitate the allocation of Working Memory (WM) resources. WM has been consistently shown to be an important predictor of children's math development and achievement. The aim of our study was to uncover the specific role of WM in nonsymbolic approximate math. For this purpose, we conducted a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-symbolic halving in an amazonian indigene group.Koleen McCrink, Elizabeth Spelke, Stanislas Dehaene & Pierre Pica - 2013 - Developmental Science 16 (3):451-462.
    Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a video event (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The mapping of numbers on space : Evidence for a logarithmic Intuition.Véronique Izard, Pierre Pica, Elizabeth Spelke & Stanislas Dehaene - 2008 - Médecine/Science 24 (12):1014-1016.
    Des branches entières des mathématiques sont fondées sur des liens posés entre les nombres et l’espace : mesure de longueurs, définition de repères et de coordonnées, projection des nombres complexes sur le plan… Si les nombres complexes, comme l’utilisation de repères, sont apparus relativement récemment (vers le XVIIe siècle), la mesure des longueurs est en revanche un procédé très ancien, qui remonte au moins au 3e ou 4e millénaire av. J-C. Loin d’être fortuits, ces liens entre les nombres et l’espace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparing biological motion in two distinct human societies.Pierre Pica, Stuart Jackson, Randolph Blake & Nikolaus Troje - 2011 - PLoS ONE 6 (12):e28391.
    Cross cultural studies have played a pivotal role in elucidating the extent to which behavioral and mental characteristics depend on specific environmental influences. Surprisingly, little field research has been carried out on a fundamentally important perceptual ability, namely the perception of biological motion. In this report, we present details of studies carried out with the help of volunteers from the Mundurucu indigene, a group of people native to Amazonian territories in Brazil. We employed standard biological motion perception tasks inspired by (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Numerical Architecture.Eric Mandelbaum - 2013 - Topics in Cognitive Science 5 (1):367-386.
    The idea that there is a “Number Sense” (Dehaene, 1997) or “Core Knowledge” of number ensconced in a modular processing system (Carey, 2009) has gained popularity as the study of numerical cognition has matured. However, these claims are generally made with little, if any, detailed examination of which modular properties are instantiated in numerical processing. In this article, I aim to rectify this situation by detailing the modular properties on display in numerical cognitive processing. In the process, I review literature (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Flexible intuitions of Euclidean geometry in an Amazonian indigene group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantity Recognition Among Speakers of an Anumeric Language.Caleb Everett & Keren Madora - 2012 - Cognitive Science 36 (1):130-141.
    Recent research has suggested that the Pirahã, an Amazonian tribe with a number-less language, are able to match quantities > 3 if the matching task does not require recall or spatial transposition. This finding contravenes previous work among the Pirahã. In this study, we re-tested the Pirahãs’ performance in the crucial one-to-one matching task utilized in the two previous studies on their numerical cognition, as well as in control tasks requiring recall and mental transposition. We also conducted a novel quantity (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Children’s understanding of the relationship between addition and subtraction.Camilla K. Gilmore & Elizabeth S. Spelke - 2008 - Cognition 107 (3):932-945.
    In learning mathematics, children must master fundamental logical relationships, including the inverse relationship between addition and subtraction. At the start of elementary school, children lack generalized understanding of this relationship in the context of exact arithmetic problems: they fail to judge, for example, that 12 + 9 - 9 yields 12. Here, we investigate whether preschool children’s approximate number knowledge nevertheless supports understanding of this relationship. Five-year-old children were more accurate on approximate large-number arithmetic problems that involved an inverse transformation (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Linguistic Determinism and the Innate Basis of Number.Stephen Laurence & Eric Margolis - 2005 - In Peter Carruthers, Stephen Laurence & Stephen Stich (eds.), The Innate Mind: Structure and Contents. New York, US: Oxford University Press on Demand.
    Strong nativist views about numerical concepts claim that human beings have at least some innate precise numerical representations. Weak nativist views claim only that humans, like other animals, possess an innate system for representing approximate numerical quantity. We present a new strong nativist model of the origins of numerical concepts and defend the strong nativist approach against recent cross-cultural studies that have been interpreted to show that precise numerical concepts are dependent on language and that they are restricted to speakers (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bootstrapping the Mind: Analogical Processes and Symbol Systems.Dedre Gentner - 2010 - Cognitive Science 34 (5):752-775.
    Human cognition is striking in its brilliance and its adaptability. How do we get that way? How do we move from the nearly helpless state of infants to the cognitive proficiency that characterizes adults? In this paper I argue, first, that analogical ability is the key factor in our prodigious capacity, and, second, that possession of a symbol system is crucial to the full expression of analogical ability.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Is linguistic determinism an empirically testable hypothesis?Helen3 De Cruz - 2009 - Logique Et Analyse 52 (208):327-341.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-symbolic arithmetic in adults and young children.Hilary Barth, Kristen La Mont, Jennifer Lipton, Stanislas Dehaene, Nancy Kanwisher & Elizabeth Spelke - 2006 - Cognition 98 (3):199-222.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Theoretical implications of the study of numbers and numerals in mundurucu.Pierre Pica & Alain Lecomte - 2008 - Philosophical Psychology 21 (4):507 – 522.
    Developing earlier studies of the system of numbers in Mundurucu, this paper argues that the Mundurucu numeral system is far more complex than usually assumed. The Mundurucu numeral system provides indirect but insightful arguments for a modular approach to numbers and numerals. It is argued that distinct components must be distinguished, such as a system of representation of numbers in the format of internal magnitudes, a system of representation for individuals and sets, and one-to-one correspondences between the numerosity expressed by (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A representational account of self-knowledge.Albert Newen & Gottfried Vosgerau - 2007 - Erkenntnis 67 (2):337 - 353.
    Self-knowledge is knowledge of one’s own states (or processes) in an indexical mode of presentation. The philosophical debate is concentrating on mental states (or processes). If we characterize self-knowledge by natural language sentences, the most adequate utterance has a structure like “I know that I am in mental state M”. This common sense characterization has to be developed into an adequate description. In this investigation we will tackle two questions: (i) What precisely is the phenomenon referred to by “self-knowledge” and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Number Nativism.Sam Clarke - forthcoming - Philosophy and Phenomenological Research.
    Number Nativism is the view that humans innately represent precise natural numbers. Despite a long and venerable history, it is often considered hopelessly out of touch with the empirical record. I argue that this is a mistake. After clarifying Number Nativism and distancing it from related conjectures, I distinguish three arguments which have been seen to refute the view. I argue that, while popular, two of these arguments miss the mark, and fail to place pressure on Number Nativism. Meanwhile, a (...)
    Download  
     
    Export citation  
     
    Bookmark