11 found
Order:
  1. Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  2. Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures.Pierre Pica, Stanislas Dehaene, Elizabeth Spelke & Véronique Izard - 2008 - Science 320 (5880):1217-1220.
    The mapping of numbers onto space is fundamental to measurement and to mathematics. Is this mapping a cultural invention or a universal intuition shared by all humans regardless of culture and education? We probed number-space mappings in the Mundurucu, an Amazonian indigene group with a reduced numerical lexicon and little or no formal education. At all ages, the Mundurucu mapped symbolic and nonsymbolic numbers onto a logarithmic scale, whereas Western adults used linear mapping with small or symbolic numbers and logarithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  3. Core Knowledge of Geometry in an Amazonian Indigene Group.Stanislas Dehaene, Véronique Izard, Pierre Pica & Elizabeth Spelke - 2006 - Science 311 (5759)::381-4.
    Does geometry constitues a core set of intuitions present in all humans, regarless of their language or schooling ? We used two non verbal tests to probe the conceptual primitives of geometry in the Munduruku, an isolated Amazonian indigene group. Our results provide evidence for geometrical intuitions in the absence of schooling, experience with graphic symbols or maps, or a rich language of geometrical terms.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  4. Education Enhances the Acuity of the Nonverbal Approximate Number System.Manuela Piazza, Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2013 - Psychological Science 24 (4):p.
    All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  5. Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  6. Visual foundations of Euclidean Geometry.Véronique Izard, Pierre Pica & Elizabeth Spelke - 2022 - Cognitive Psychology 136 (August):101494.
    Geometry defines entities that can be physically realized in space, and our knowledge of abstract geometry may therefore stem from our representations of the physical world. Here, we focus on Euclidean geometry, the geometry historically regarded as “natural”. We examine whether humans possess representations describing visual forms in the same way as Euclidean geometry – i.e., in terms of their shape and size. One hundred and twelve participants from the U.S. (age 3–34 years), and 25 participants from the Amazon (age (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Flexible intuitions of Euclidean geometry in an Amazonian indigene group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  8. Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The spatial content of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Quais são os vinculos entre aritmética e linguagem ? Um estudo na Amazonia.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2005 - Revista de Estudos E Pesquisas 2 (1):199-236.
    Download  
     
    Export citation  
     
    Bookmark  
  10. The mapping of numbers on space : Evidence for a logarithmic Intuition.Véronique Izard, Pierre Pica, Elizabeth Spelke & Stanislas Dehaene - 2008 - Médecine/Science 24 (12):1014-1016.
    Des branches entières des mathématiques sont fondées sur des liens posés entre les nombres et l’espace : mesure de longueurs, définition de repères et de coordonnées, projection des nombres complexes sur le plan… Si les nombres complexes, comme l’utilisation de repères, sont apparus relativement récemment (vers le XVIIe siècle), la mesure des longueurs est en revanche un procédé très ancien, qui remonte au moins au 3e ou 4e millénaire av. J-C. Loin d’être fortuits, ces liens entre les nombres et l’espace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Quels sont les liens entre arithmétique et langage ? Une étude en Amazonie.Stanislas Dehaene, Véronique Izard, Cathy Lemer & Pierre Pica - 2007 - In Jean Bricmont & Julie Franck (eds.), Cahier Chomsky. L'Herne.
    Download  
     
    Export citation  
     
    Bookmark   1 citation