Switch to: Citations

Add references

You must login to add references.
  1. Almost everywhere domination.Natasha L. Dobrinen & Stephen G. Simpson - 2004 - Journal of Symbolic Logic 69 (3):914-922.
    A Turing degree a is said to be almost everywhere dominating if, for almost all $X \in 2^{\omega}$ with respect to the "fair coin" probability measure on $2^{\omega}$ , and for all g: $\omega \rightarrow \omega$ Turing reducible to X, there exists f: $\omega \rightarrow \omega$ of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Embeddings into the Medvedev and Muchnik lattices of Π0 1 classes.Stephen Binns & Stephen G. Simpson - 2004 - Archive for Mathematical Logic 43 (3):399-414.
    Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 0 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w . We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Uniform Almost Everywhere Domination.Peter Cholak, Noam Greenberg & Joseph S. Miller - 2006 - Journal of Symbolic Logic 71 (3):1057 - 1072.
    We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed that such functions are related to the proof-theoretic strength of the regularity of Lebesgue measure for Gδ sets. Our constructions essentially settle the reverse mathematical classification of this principle.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Lowness for the class of random sets.Antonín Kučera & Sebastiaan A. Terwijn - 1999 - Journal of Symbolic Logic 64 (4):1396-1402.
    A positive answer to a question of M. van Lambalgen and D. Zambella whether there exist nonrecursive sets that are low for the class of random sets is obtained. Here a set A is low for the class RAND of random sets if RAND = RAND A.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On a Conjecture of Dobrinen and Simpson concerning Almost Everywhere Domination.Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman & Reed Solomon - 2006 - Journal of Symbolic Logic 71 (1):119 - 136.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations