Switch to: Citations

References in:

本体:广谱的知识集成工具

In 基于基本形式化本体的本体构建. Beijing: pp. 4-8 (2020)

Add references

You must login to add references.
  1. Aboutness: Towards Foundations for the Information Artifact Ontology.Werner Ceusters & Barry Smith - 2015 - In Werner Ceusters & Barry Smith (eds.), Proceedings of the Sixth International Conference on Biomedical Ontology (ICBO). CEUR vol. 1515. pp. 1-5.
    The Information Artifact Ontology (IAO) was created to serve as a domain‐neutral resource for the representation of types of information content entities (ICEs) such as documents, data‐bases, and digital im‐ages. We identify a series of problems with the current version of the IAO and suggest solutions designed to advance our understanding of the relations between ICEs and associated cognitive representations in the minds of human subjects. This requires embedding IAO in a larger framework of ontologies, including most importantly the Mental (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Space Object Ontology.Alexander P. Cox, Christopher Nebelecky, Ronald Rudnicki, William Tagliaferri, John L. Crassidis & Barry Smith - 2016 - In Alexander P. Cox, Christopher Nebelecky, Ronald Rudnicki, William Tagliaferri, John L. Crassidis & Barry Smith (eds.), 19th International Conference on Information Fusion (FUSION 2016). IEEE.
    Achieving space domain awareness requires the identification, characterization, and tracking of space objects. Storing and leveraging associated space object data for purposes such as hostile threat assessment, object identification, and collision prediction and avoidance present further challenges. Space objects are characterized according to a variety of parameters including their identifiers, design specifications, components, subsystems, capabilities, vulnerabilities, origins, missions, orbital elements, patterns of life, processes, operational statuses, and associated persons, organizations, or nations. The Space Object Ontology provides a consensus-based realist framework (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Ontology for Biomedical Investigations.Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A. Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Daniel Schober, Barry Smith, Larisa N. Soldatova, Christian J. Stoeckert, Chris F. Taylor, Carlo Torniai, Jessica A. Turner, Randi Vita, Patricia L. Whetzel & Jie Zheng - 2016 - PLoS ONE 11 (4):e0154556.
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Functions in Basic Formal Ontology.Andrew D. Spear, Werner Ceusters & Barry Smith - 2016 - Applied ontology 11 (2):103-128.
    The notion of function is indispensable to our understanding of distinctions such as that between being broken and being in working order (for artifacts) and between being diseased and being healthy (for organisms). A clear account of the ontology of functions and functioning is thus an important desideratum for any top-level ontology intended for application to domains such as engineering or medicine. The benefit of using top-level ontologies in applied ontology can only be realized when each of the categories identified (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Interoperability of disparate engineering domain ontologies using Basic Formal Ontology.Thomas J. Hagedorn, Barry Smith, Sundar Krishnamurty & Ian R. Grosse - 2019 - Journal of Engineering Design 31.
    As engineering applications require management of ever larger volumes of data, ontologies offer the potential to capture, manage, and augment data with the capability for automated reasoning and semantic querying. Unfortunately, considerable barriers hinder wider deployment of ontologies in engineering. Key among these is lack of a shared top-level ontology to unify and organise disparate aspects of the field and coordinate co-development of orthogonal ontologies. As a result, many engineering ontologies are limited to their scope, and functionally difficult to extend (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Joint Doctrine Ontology: A Benchmark for Military Information Systems Interoperability.Peter Morosoff, Ron Rudnicki, Jason Bryant, Robert Farrell & Barry Smith - 2015 - In Semantic Technology for Intelligence, Defense and Security (STIDS). CEUR vol. 1325. pp. 2-9.
    When the U.S. conducts warfare, elements of a force are drawn from different services and work together as a single team to accomplish an assigned mission. To achieve such unified action, it is necessary that the doctrines governing the actions of members of specific services be both consistent with and subservient to joint Doctrine. Because warfighting today increasingly involves not only live forces but also automated systems, unified action requires that information technology that is used in joint warfare must be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations