7 found
Order:
  1.  69
    The Ontology for Biomedical Investigations.Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A. Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Daniel Schober, Barry Smith, Larisa N. Soldatova, Christian J. Stoeckert, Chris F. Taylor, Carlo Torniai, Jessica A. Turner, Randi Vita, Patricia L. Whetzel & Jie Zheng - 2016 - PLoS ONE 11 (4):e0154556.
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  2. Biomedical Imaging Ontologies: A Survey and Proposal for Future Work.Barry Smith, Sivaram Arabandi, Mathias Brochhausen, Michael Calhoun, Paolo Ciccarese, Scott Doyle, Bernard Gibaud, Ilya Goldberg, Charles E. Kahn Jr, James Overton, John Tomaszewski & Metin Gurcan - 2015 - Journal of Pathology Informatics 6 (37):37.
    Ontology is one strategy for promoting interoperability of heterogeneous data through consistent tagging. An ontology is a controlled structured vocabulary consisting of general terms (such as “cell” or “image” or “tissue” or “microscope”) that form the basis for such tagging. These terms are designed to represent the types of entities in the domain of reality that the ontology has been devised to capture; the terms are provided with logical defi nitions thereby also supporting reasoning over the tagged data. Aim: This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Vital Sign Ontology.Albert Goldfain, Barry Smith, Sivaram Arabandi, Mathias Brochhausen & William R. Hogan - 2011 - In Proceedings of the Workshop on Bio-Ontologies, ISMB, Vienna, June 2011. Vienna: pp. 71-74.
    We introduce the Vital Sign Ontology (VSO), an extension of the Ontology for General Medical Science (OGMS) that covers the consensus human vital signs: blood pressure, body temperature, respiratory rate, and pulse rate. VSO provides a controlled structured vocabulary for describing vital sign measurement data, the processes of measuring vital signs, and the anatomical entities participating in such measurements. VSO is implemented in OWL-DL and follows OBO Foundry guidelines and best practices. If properly developed and extended, we believe the VSO (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  62
    Applications of the ACGT Master Ontology on Cancer.Mathias Brochhausen, Gabriele Weiler, Luis Martín, Cristian Cocos, Holger Stenzhorn, Norbert Graf, Martin Dörr, Manolis Tsiknakis & Barry Smith - 2008 - In R. Meersman & P. Herrero (eds.), Proceedings of 4th International IFIP Workshop On Semantic Web and Web Semantics (OTM 2008: Workshops), LNCS 5333. pp. 1046–1055.
    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the ontology within (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Establishing and Harmonizing Ontologies in an Interdisciplinary Health Care and Clinical Research Environment.Barry Smith & Mathias Brochhausen - 2008 - Studies in Health, Technology and Informatics 134:219-234.
    Ontologies are being ever more commonly used in biomedical informatics and we provide a survey of some of these uses, and of the relations between ontologies and other terminology resources. In order for ontologies to become truly useful, two objectives must be met. First, ways must be found for the transparent evaluation of ontologies. Second, existing ontologies need to be harmonised. We argue that one key foundation for both ontology evaluation and harmonisation is the adoption of a realist paradigm in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Putting Biomedical Ontologies to Work.Barry Smith & Mathias Brochhausen - 2010 - Methods of Information in Medicine 49 (2):135-40.
    Biomedical ontologies exist to serve integration of clinical and experimental data, and it is critical to their success that they be put to widespread use in the annotation of data. How, then, can ontologies achieve the sort of user-friendliness, reliability, cost-effectiveness, and breadth of coverage that is necessary to ensure extensive usage? Methods: Our focus here is on two different sets of answers to these questions that have been proposed, on the one hand in medicine, by the SNOMED CT community, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  31
    Biomedical Terminologies and Ontologies: Enabling Biomedical Semantic Interoperability and Standards in Europe.Bernard de Bono, Mathias Brochhausen, Sybo Dijkstra, Dipak Kalra, Stephan Keifer & Barry Smith - 2009 - In European Large-Scale Action on Electronic Health.
    In the management of biomedical data, vocabularies such as ontologies and terminologies (O/Ts) are used for (i) domain knowledge representation and (ii) interoperability. The knowledge representation role supports the automated reasoning on, and analysis of, data annotated with O/Ts. At an interoperability level, the use of a communal vocabulary standard for a particular domain is essential for large data repositories and information management systems to communicate consistently with one other. Consequently, the interoperability benefit of selecting a particular O/T as a (...)
    Download  
     
    Export citation  
     
    Bookmark