Switch to: Citations

References in:

A First-Order Logic Formalization of the Industrial Ontology Foundry Signature Using Basic Formal Ontology

In Barry Smith, Farhad Ameri, Hyunmin Cheong, Dimitris Kiritsis, Dusan Sormaz, Chris Will & J. Neil Otte (eds.), ”, Proceedings of the Joint Ontology Workshops (JOWO), Graz (2019)

Add references

You must login to add references.
  1. On Classifying Material Entities in Basic Formal Ontology.Barry Smith - 2010 - In Barry Smith, Riichiro Mizoguchi & Sumio Nakagawa (eds.), Interdisciplinary Ontology, Vol. 3: Proceedings of the Third Interdisciplinary Ontology Meeting. Tokyo: Keio University Press. pp. 1-13.
    Basic Formal Ontology was created in 2002 as an upper-level ontology to support the creation of consistent lower-level ontologies, initially in the subdomains of biomedical research, now also in other areas, including defense and security. BFO is currently undergoing revisions in preparation for the release of BFO version 2.0. We summarize some of the proposed revisions in what follows, focusing on BFO’s treatment of material entities, and specifically of the category object.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intention, plans, and practical reason.Michael Bratman - 1987 - Cambridge: Cambridge, MA: Harvard University Press.
    What happens to our conception of mind and rational agency when we take seriously future-directed intentions and plans and their roles as inputs into further practical reasoning? The author's initial efforts in responding to this question resulted in a series of papers that he wrote during the early 1980s. In this book, Bratman develops further some of the main themes of these essays and also explores a variety of related ideas and issues. He develops a planning theory of intention. Intentions (...)
    Download  
     
    Export citation  
     
    Bookmark   807 citations  
  • Interoperability of disparate engineering domain ontologies using Basic Formal Ontology.Thomas J. Hagedorn, Barry Smith, Sundar Krishnamurty & Ian R. Grosse - 2019 - Journal of Engineering Design 31.
    As engineering applications require management of ever larger volumes of data, ontologies offer the potential to capture, manage, and augment data with the capability for automated reasoning and semantic querying. Unfortunately, considerable barriers hinder wider deployment of ontologies in engineering. Key among these is lack of a shared top-level ontology to unify and organise disparate aspects of the field and coordinate co-development of orthogonal ontologies. As a result, many engineering ontologies are limited to their scope, and functionally difficult to extend (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Ontological Approach to Representing the Product Life Cycle.J. Neil Otte, Dimitris Kiritsi, Munira Mohd Ali, Ruoyu Yang, Binbin Zhang, Ron Rudnicki, Rahul Rai & Barry Smith - 2019 - Applied ontology 14 (2):1-19.
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Product Life Cycle Ontology for Additive Manufacturing.Munira Mohd Ali, Rahul Rai, J. Neil Otte & Barry Smith - 2019 - Computers in Industry 105:191-203.
    The manufacturing industry is evolving rapidly, becoming more complex, more interconnected, and more geographically distributed. Competitive pressure and diversity of consumer demand are driving manufacturing companies to rely more and more on improved knowledge management practices. As a result, multiple software systems are being created to support the integration of data across the product life cycle. Unfortunately, these systems manifest a low degree of interoperability, and this creates problems, for instance when different enterprises or different branches of an enterprise interact. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Industrial Ontologies Foundry proof-of-concept project.Evan Wallace, Dimitris Kiritsis, Barry Smith & Chris Will - 2018 - In Ilkyeong Moon, Gyu M. Lee, Jinwoo Park, Dimitris Kiritsis & Gregor von Cieminski (eds.), Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. Springer. pp. 402-409.
    The current industrial revolution is said to be driven by the digitization that exploits connected information across all aspects of manufacturing. Standards have been recognized as an important enabler. Ontology-based information standard may provide benefits not offered by current information standards. Although there have been ontologies developed in the industrial manufacturing domain, they have been fragmented and inconsistent, and little has received a standard status. With successes in developing coherent ontologies in the biological, biomedical, and financial domains, an effort called (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Expression and Meaning.John Searle - 1982 - Philosophical Quarterly 32 (127):177-180.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • Development of a Manufacturing Ontology for Functionally Graded Materials.Francesco Furini, Rahul Rai, Barry Smith, Georgio Colombo & Venkat Krovi - 2016 - In Francesco Furini, Rahul Rai, Barry Smith, Georgio Colombo & Venkat Krovi (eds.), Proceedings of International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE).
    The development of manufacturing technologies for new materials involves the generation of a large and continually evolving volume of information. The analysis, integration and management of such large volumes of data, typically stored in multiple independently developed databases, creates significant challenges for practitioners. There is a critical need especially for open-sharing of data pertaining to engineering design which together with effective decision support tools can enable innovation. We believe that ontology applied to engineering (OE) represents a viable strategy for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Building Ontologies with Basic Formal Ontology.Robert Arp, Barry Smith & Andrew D. Spear - 2015 - Cambridge, MA: MIT Press.
    In the era of “big data,” science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Download  
     
    Export citation  
     
    Bookmark   144 citations