Switch to: Citations

Add references

You must login to add references.
  1. The Ontology-Epistemology Divide: A Case Study in Medical Terminology.OIivier Bodenreider, Barry Smith & Anita Burgun - 2004 - In Achille C. Varzi & Laure Vieu (eds.), ”, Formal Ontology in Information Systems. Proceedings of the Third International Conference. IOS Press.
    Medical terminology collects and organizes the many different kinds of terms employed in the biomedical domain both by practitioners and also in the course of biomedical research. In addition to serving as labels for biomedical classes, these names reflect the organizational principles of biomedical vocabularies and ontologies. Some names represent invariant features (classes, universals) of biomedical reality (i.e., they are a matter for ontology). Other names, however, convey also how this reality is perceived, measured, and understood by health professionals (i.e., (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Referent Tracking: The Problem of Negative Findings.Werner Ceusters, Peter Elkin & Barry Smith - 2006 - Studies in Health Technology and Informatics 124:741-46.
    The paradigm of referent tracking is based on a realist presupposition which rejects so-called negative entities (congenital absent nipple, and the like) as spurious. How, then, can a referent tracking-based Electronic Health Record deal with what are standardly called ‘negative findings’? To answer this question we carried out an analysis of some 748 sentences drawn from patient charts and containing some form of negation. Our analysis shows that to deal with these sentences we need to introduce a new ontological relationship (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From concepts to clinical reality: An essay on the benchmarking of biomedical terminologies.Barry Smith - 2006 - Journal of Biomedical Informatics 39 (3):288-298.
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and surveys (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research.Barry Smith & Werner Ceusters - 2007 - In Gordana Dodig Crnkovic & Susan Stuart (eds.), Computation, Information, Cognition: The Nexus and the Liminal.f. Cambridge Scholars Press. pp. 104-122.
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations