Switch to: Citations

Add references

You must login to add references.
  1. Iterated perfectset forcing.J. E. Baumgartner - 1979 - Annals of Mathematical Logic 17 (3):271.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Silver Antichains.Otmar Spinas & Marek Wyszkowski - 2015 - Journal of Symbolic Logic 80 (2):503-519.
    In this paper we investigate the structure of uncountable maximal antichains of Silver forcing and show that they have to be at least of size d, where d is the dominating number. Part of this work can be used to show that the additivity of the Silver forcing ideal has size at least the unbounding number b. It follows that every reasonable amoeba Silver forcing adds a dominating real.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • Borel partitions of infinite subtrees of a perfect tree.A. Louveau, S. Shelah & B. Veličković - 1993 - Annals of Pure and Applied Logic 63 (3):271-281.
    Louveau, A., S. Shelah and B. Velikovi, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Combinatorial Properties of the Ideal $mathfrak{B}_2$.J. Cichon, A. Roslanowski, J. Steprans & B. Weglorz - 1993 - Journal of Symbolic Logic 58 (1):42-54.
    By $\mathfrak{B}_2$ we denote the $\sigma$-ideal of all subsets $A$ of the Cantor set $\{0,1\}^\omega$ such that for every infinite subset $T$ of $\omega$ the restriction $A\mid\{0,1\}^T$ is a proper subset of $\{0,1\}^T$. In this paper we investigate set theoretical properties of this and similar ideals.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
    In this paper we study the question assuming MA+⌝CH does Sacks forcing or Laver forcing collapse cardinals? We show that this question is equivalent to the question of what is the additivity of Marczewski's ideals 0. We give a proof that it is consistent that Sacks forcing collapses cardinals. On the other hand we show that Laver forcing does not collapse cardinals.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Borel partitions of infinite subtrees of a perfect tree.A. Louveau, S. Shelah & B. Velikovi - 1993 - Annals of Pure and Applied Logic 63 (3):271-281.
    Louveau, A., S. Shelah and B. Velikovi, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Generic trees.Otmar Spinas - 1995 - Journal of Symbolic Logic 60 (3):705-726.
    We continue the investigation of the Laver ideal ℓ 0 and Miller ideal m 0 started in [GJSp] and [GRShSp]; these are the ideals on the Baire space associated with Laver forcing and Miller forcing. We solve several open problems from these papers. The main result is the construction of models for $t , where add denotes the additivity coefficient of an ideal. For this we construct amoeba forcings for these forcings which do not add Cohen reals. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Happy families.A. R. D. Mathias - 1977 - Annals of Mathematical Logic 12 (1):59.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)Combinatorial properties of the ideal ℬ2.J. Cichoń, A. Rosłanowski, J. Steprans & B. Węglorz - 1993 - Journal of Symbolic Logic 58 (1):42-54.
    By B2 we denote the σ-ideal of all subsets A of the Cantor set {0,1}ω such that for every infinite subset T of ω the restriction A∣{0,1}T is a proper subset of {0,1}T. In this paper we investigate set theoretical properties of this and similar ideals.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Iterated perfect-set forcing.James E. Baumgartner & Richard Laver - 1979 - Annals of Mathematical Logic 17 (3):271-288.
    Download  
     
    Export citation  
     
    Bookmark   41 citations