Switch to: Citations

Add references

You must login to add references.
  1. [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (2 other versions)Set theory.Thomas Jech - 1981 - Journal of Symbolic Logic.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Constructibility.Keith J. Devlin - 1987 - Journal of Symbolic Logic 52 (3):864-867.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
    Assuming some large cardinals, a model of ZFC is obtained in which $\aleph_{\omega+1}$ carries no Aronszajn trees. It is also shown that if $\lambda$ is a singular limit of strongly compact cardinals, then $\lambda^+$ carries no Aronszajn trees.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Aronszajn trees on ℵ2 and ℵ3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213-230.
    Assuming the existence of a supercompact cardinal and a weakly compact cardinal above it, we provide a generic extension where there are no Aronszajn trees of height ω 2 or ω 3 . On the other hand we show that some large cardinal assumptions are necessary for such a consistency result.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The tree property up to אω+1.Itay Neeman - 2014 - Journal of Symbolic Logic 79 (2):429-459.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Fragments of Martin's Maximum in generic extensions.Y. Yoshinobu & B. Konig - 2004 - Mathematical Logic Quarterly 50 (3):297.
    We show that large fragments of MM, e. g. the tree property and stationary reflection, are preserved by strongly -game-closed forcings. PFA can be destroyed by a strongly -game-closed forcing but not by an ω2-closed.
    Download  
     
    Export citation  
     
    Bookmark   10 citations