Switch to: References

Citations of:

Set theory

Journal of Symbolic Logic (1981)

Add citations

You must login to add citations.
  1. Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalizations of the Kunen inconsistency.Joel David Hamkins, Greg Kirmayer & Norman Lewis Perlmutter - 2012 - Annals of Pure and Applied Logic 163 (12):1872-1890.
    We present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself. For example, there is no elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one set-forcing ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or indeed (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Forcing the Least Measurable to Violate GCH.Arthur W. Apter - 1999 - Mathematical Logic Quarterly 45 (4):551-560.
    Starting with a model for “GCH + k is k+ supercompact”, we force and construct a model for “k is the least measurable cardinal + 2k = K+”. This model has the property that forcing over it with Add preserves the fact k is the least measurable cardinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Borel on the Questions Versus Borel on the Answers.Heike Mildenberger - 1999 - Mathematical Logic Quarterly 45 (1):127-133.
    We consider morphisms between binary relations that are used in the theory of cardinal characteristics. In [8] we have shown that there are pairs of relations with no Borel morphism connecting them. The reason was a strong impact of the first of the two functions that constitute a morphism, the so-called function on the questions. In this work we investigate whether the second half, the function on the answers' side, has a similarly strong impact. The main question is: Does the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Universal forcing notions and ideals.Andrzej Rosłanowski & Saharon Shelah - 2007 - Archive for Mathematical Logic 46 (3-4):179-196.
    Our main result states that a finite iteration of Universal Meager forcing notions adds generic filters for many forcing notions determined by universality parameters. We also give some results concerning cardinal characteristics of the σ-ideals determined by those universality parameters.
    Download  
     
    Export citation  
     
    Bookmark  
  • Only Countable Reichenbachian Common Cause Systems Exist.Leszek Wroński & Michał Marczyk - 2010 - Foundations of Physics 40 (8):1155-1160.
    In this paper we give a positive answer to a problem posed by Hofer-Szabó and Rédei (Int. J. Theor. Phys. 43:1819–1826, 2004) regarding the existence of infinite Reichenbachian common cause systems (RCCSs). An example of a countably infinite RCCS is presented. It is also determined that no RCCSs of greater cardinality exist.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)On the Mathematical Content of the Theory of Classes KM.Ramón Jansana - 1989 - Mathematical Logic Quarterly 35 (5):399-412.
    Download  
     
    Export citation  
     
    Bookmark  
  • Inscribing nonmeasurable sets.Szymon Żeberski - 2011 - Archive for Mathematical Logic 50 (3-4):423-430.
    Our main inspiration is the work in paper (Gitik and Shelah in Isr J Math 124(1):221–242, 2001). We will prove that for a partition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} of the real line into meager sets and for any sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}_n}$$\end{document} of subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} one can find a sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
    We prove various theorems about the preservation and destruction of the tree property at ω2. Working in a model of Mitchell [9] where the tree property holds at ω2, we prove that ω2 still has the tree property after ccc forcing of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} or adding an arbitrary number of Cohen reals. We show that there is a relatively mild forcing in this same model which destroys the tree property. Finally we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Iterative Conception of Set: a (Bi-)Modal Axiomatisation.J. P. Studd - 2013 - Journal of Philosophical Logic 42 (5):1-29.
    The use of tensed language and the metaphor of set ‘formation’ found in informal descriptions of the iterative conception of set are seldom taken at all seriously. Both are eliminated in the nonmodal stage theories that formalise this account. To avoid the paradoxes, such accounts deny the Maximality thesis, the compelling thesis that any sets can form a set. This paper seeks to save the Maximality thesis by taking the tense more seriously than has been customary (although not literally). A (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • True or false? A case in the study of harmonic functions.Fausto di Biase - 2009 - Topoi 28 (2):143-160.
    Recent mathematical results, obtained by the author, in collaboration with Alexander Stokolos, Olof Svensson, and Tomasz Weiss, in the study of harmonic functions, have prompted the following reflections, intertwined with views on some turning points in the history of mathematics and accompanied by an interpretive key that could perhaps shed some light on other aspects of (the development of) mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Might All Infinities Be the Same Size?Alexander R. Pruss - 2020 - Australasian Journal of Philosophy 98 (3):604-617.
    Cantor proved that no set has a bijection between itself and its power set. This is widely taken to have shown that there infinitely many sizes of infinite sets. The argument depends on the princip...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • God meets Satan’s Apple: the paradox of creation.Rubio Daniel - 2018 - Philosophical Studies 175 (12):2987-3004.
    It is now the majority view amongst philosophers and theologians that any world could have been better. This places the choice of which world to create into an especially challenging class of decision problems: those that are discontinuous in the limit. I argue that combining some weak, plausible norms governing this type of problem with a creator who has the attributes of the god of classical theism results in a paradox: no world is possible. After exploring some ways out of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)On the Mathematical Content of the Theory of Classes KM.Ramón Jansana - 1989 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 35 (5):399-412.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Nonstructure of Elementary Submodels of an Unsuperstable Homogeneous Structure.Tapani Hyttinen - 1997 - Mathematical Logic Quarterly 43 (1):134-142.
    In the first part of this paper we let M be a stable homogeneous model and we prove a nonstructure theorem for the class of all elementary submodels of M, assuming that M is ‘unsuperstable’ and has Skolem functions. In the second part we assume that M is an unstable homogeneous model of large cardinality and we prove a nonstructure theorem for the class of all elementary submodels of M.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Finite additivity, another lottery paradox and conditionalisation.Colin Howson - 2014 - Synthese 191 (5):1-24.
    In this paper I argue that de Finetti provided compelling reasons for rejecting countable additivity. It is ironical therefore that the main argument advanced by Bayesians against following his recommendation is based on the consistency criterion, coherence, he himself developed. I will show that this argument is mistaken. Nevertheless, there remain some counter-intuitive consequences of rejecting countable additivity, and one in particular has all the appearances of a full-blown paradox. I will end by arguing that in fact it is no (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Kelley-Morse+Types of well order is not a conservative extension of Kelley Morse.Haim Judah & M. Victoria Marshall - 1994 - Archive for Mathematical Logic 33 (1):13-21.
    Assuming the consistency ofZF + “There is an inaccessible number of inaccessibles”, we prove that Kelley Morse theory plus types is not a conservative extension of Kelley-Morse theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A model with a measurable which does not carry a normal measure.Eilon Bilinsky & Moti Gitik - 2012 - Archive for Mathematical Logic 51 (7-8):863-876.
    We construct a model of ZF in which there is a measurable cardinal but there is no normal ultrafilter over it.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Shelah’s work on non-semi-proper iterations, I.Chaz Schlindwein - 2008 - Archive for Mathematical Logic 47 (6):579-606.
    In this paper, we give details of results of Shelah concerning iterated Namba forcing over a ground model of CH and iteration of P[W] where W is a stationary subset of ω 2 concentrating on points of countable cofinality.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Minimal elementary extensions of models of set theory and arithmetic.Ali Enayat - 1990 - Archive for Mathematical Logic 30 (3):181-192.
    TheoremEvery model of ZFChas a conservative elementary extension which possesses a cofinal minimal elementary extension.An application of Boolean ultrapowers to models of full arithmetic is also presented.
    Download  
     
    Export citation  
     
    Bookmark  
  • Results on the Generic Kurepa Hypothesis.R. B. Jensen & K. Schlechta - 1990 - Archive for Mathematical Logic 30 (1):13-27.
    K.J. Devlin has extended Jensen's construction of a model ofZFC andCH without Souslin trees to a model without Kurepa trees either. We modify the construction again to obtain a model with these properties, but in addition, without Kurepa trees inccc-generic extensions. We use a partially defined ◊-sequence, given by a fine structure lemma. We also show that the usual collapse ofκ Mahlo toω 2 will give a model without Kurepa trees not only in the model itself, but also inccc-extensions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Turing determinacy and the continuum hypothesis.Ramez L. Sami - 1989 - Archive for Mathematical Logic 28 (3):149-154.
    From the hypothesis that all Turing closed games are determined we prove: (1) the Continuum Hypothesis and (2) every subset of ℵ1 is constructible from a real.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • No bound for the first fixed point.Moti Gitik - 2005 - Journal of Mathematical Logic 5 (02):193-246.
    Our aim is to show that it is impossible to find a bound for the power of the first fixed point of the aleph function.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An equiconsistency result on partial squares.John Krueger & Ernest Schimmerling - 2011 - Journal of Mathematical Logic 11 (1):29-59.
    We prove that the following two statements are equiconsistent: there exists a greatly Mahlo cardinal; there exists a regular uncountable cardinal κ such that no stationary subset of κ+ ∩ cof carries a partial square.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The world, the flesh and the argument from design.William Boos - 1995 - Synthese 104 (2):15 - 52.
    In the the passage just quoted from the Dialogues concerning Natural Religion, David Hume developed a thought-experiment that contravened his better-known views about "chance" expressed in his Treatise and first Enquiry. For among other consequences of the 'eternal-recurrence' hypothesis Philo proposes in this passage, it may turn out that what the vulgar call cause is nothing but a secret and concealed chance. (In this sentence, I have simply reversed "cause" and "chance" in a well-known passage from Hume's Treatise, p. 130). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Set mapping reflection.Justin Tatch Moore - 2005 - Journal of Mathematical Logic 5 (1):87-97.
    In this note we will discuss a new reflection principle which follows from the Proper Forcing Axiom. The immediate purpose will be to prove that the bounded form of the Proper Forcing Axiom implies both that 2ω = ω2 and that [Formula: see text] satisfies the Axiom of Choice. It will also be demonstrated that this reflection principle implies that □ fails for all regular κ > ω1.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Easton's theorem for Ramsey and strongly Ramsey cardinals.Brent Cody & Victoria Gitman - 2015 - Annals of Pure and Applied Logic 166 (9):934-952.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ordinal notations based on a weakly Mahlo cardinal.Michael Rathjen - 1990 - Archive for Mathematical Logic 29 (4):249-263.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Pxδ-Generalizations of Weak Compactness.Donna M. Carr - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (25-28):393-401.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The differences between Kurepa trees and Jech-Kunen trees.Renling Jin - 1993 - Archive for Mathematical Logic 32 (5):369-379.
    By an ω1 we mean a tree of power ω1 and height ω1. An ω1-tree is called a Kurepa tree if all its levels are countable and it has more than ω1 branches. An ω1-tree is called a Jech-Kunen tree if it has κ branches for some κ strictly between ω1 and $2^{\omega _1 }$ . In Sect. 1, we construct a model ofCH plus $2^{\omega _1 } > \omega _2$ , in which there exists a Kurepa tree with not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi. [REVIEW]Jerzy Król - 2006 - Foundations of Physics 36 (7):1070-1098.
    We analyse the proposition that the spacetime structure is modified at short distances or at high energies due to weakening of classical logic. The logic assigned to the regions of spacetime is intuitionistic logic of some topoi. Several cases of special topoi are considered. The quantum mechanical effects can be generated by such semi-classical spacetimes. The issues of: background independence and general relativity covariance, field theoretic renormalization of divergent expressions, the existence and definition of path integral measures, are briefly discussed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Pxδ‐Generalizations of Weak Compactness.Donna M. Carr - 1985 - Mathematical Logic Quarterly 31 (25‐28):393-401.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (3 other versions)A Theory of Operations on the Universe II. Infinitary Operations.Narciso Garcia - 1991 - Mathematical Logic Quarterly 37 (31-32):481-488.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (3 other versions)A Theory of Operations on the Universe II. Infinitary Operations.Narciso Garcia - 1991 - Mathematical Logic Quarterly 37 (31‐32):481-488.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A note on complete partitions in boolean algebras.Wojciech Sachwanowicz - 1990 - Mathematical Logic Quarterly 36 (3):229-232.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite mathematics.Shaughan Lavine - 1995 - Synthese 103 (3):389 - 420.
    A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)The world, the flesh and the argument from design.William Boos - 1994 - Synthese 101 (1):15 - 52.
    In the the passage just quoted from theDialogues concerning Natural Religion, David Hume developed a thought-experiment that contravened his better-known views about chance expressed in hisTreatise and firstEnquiry.For among other consequences of the eternal-recurrence hypothesis Philo proposes in this passage, it may turn out that what the vulgar call cause is nothing but a secret and concealed chance.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The proper forcing axiom, Prikry forcing, and the singular cardinals hypothesis.Justin Tatch Moore - 2006 - Annals of Pure and Applied Logic 140 (1):128-132.
    The purpose of this paper is to present some results which suggest that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. What will be proved is that a form of simultaneous reflection follows from the Set Mapping Reflection Principle, a consequence of PFA. While the results fall short of showing that MRP implies SCH, it will be shown that MRP implies that if SCH fails first at κ then every stationary subset of reflects. It will also be demonstrated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cardinal characteristics and projective wellorders.Vera Fischer & Sy David Friedman - 2010 - Annals of Pure and Applied Logic 161 (7):916-922.
    Using countable support iterations of S-proper posets, we show that the existence of a definable wellorder of the reals is consistent with each of the following: , and.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Comparison of the axioms of local and global universality.Marco Forti & Furio Honsell - 1984 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 30 (13‐16):193-196.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak Covering at Large Cardinals.Ralf ‐ Dieter Schindler - 1997 - Mathematical Logic Quarterly 43 (1):22-28.
    We show that weakly compact cardinals are the smallest large cardinals k where k+ < k+ is impossible provided 0# does not exist. We also show that if k+Kc < k+ for some k being weakly compact , then there is a transitive set M with M ⊨ ZFC + “there is a strong cardinal”.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Weak covering at large cardinals.Ralf‐Dieter Schindler - 1997 - Mathematical Logic Quarterly 43 (1):22-28.
    We show that weakly compact cardinals are the smallest large cardinals k where k+ < k+ is impossible provided 0# does not exist. We also show that if k+Kc < k+ for some k being weakly compact , then there is a transitive set M with M ⊨ ZFC + “there is a strong cardinal”.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Linearly Stratified Models for the Foundations of Nonstandard Mathematics.Mauro Di Nasso - 1998 - Mathematical Logic Quarterly 44 (1):138-142.
    Assuming the existence of an inaccessible cardinal, transitive full models of the whole set theory, equipped with a linearly valued rank function, are constructed. Such models provide a global framework for nonstandard mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • The strength of choiceless patterns of singular and weakly compact cardinals.Daniel Busche & Ralf Schindler - 2009 - Annals of Pure and Applied Logic 159 (1-2):198-248.
    We extend the core model induction technique to a choiceless context, and we exploit it to show that each one of the following two hypotheses individually implies that , the Axiom of Determinacy, holds in the of a generic extension of : every uncountable cardinal is singular, and every infinite successor cardinal is weakly compact and every uncountable limit cardinal is singular.
    Download  
     
    Export citation  
     
    Bookmark   6 citations