Switch to: Citations

Add references

You must login to add references.
  1. Abstract logic and set theory. II. large cardinals.Jouko Väänänen - 1982 - Journal of Symbolic Logic 47 (2):335-346.
    The following problem is studied: How large and how small can the Löwenheim and Hanf numbers of unbounded logics be in relation to the most common large cardinals? The main result is that the Löwenheim number of the logic with the Härtig-quantifier can be consistently put in between any two of the first weakly inaccessible, the first weakly Mahlo, the first weakly compact, the first Ramsey, the first measurable and the first supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Closed and unbounded classes and the härtig quantifier model.Philip D. Welch - 2022 - Journal of Symbolic Logic 87 (2):564-584.
    We show that assuming modest large cardinals, there is a definable class of ordinals, closed and unbounded beneath every uncountable cardinal, so that for any closed and unbounded subclasses $P, Q, {\langle L[P],\in,P \rangle }$ and ${\langle L[Q],\in,Q \rangle }$ possess the same reals, satisfy the Generalised Continuum Hypothesis, and moreover are elementarily equivalent. Examples of such P are Card, the class of uncountable cardinals, I the uniform indiscernibles, or for any n the class $C^{n}{=_{{\operatorname {df}}}}\{ \lambda \, | \, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On löwenheim–skolem–tarski numbers for extensions of first order logic.Menachem Magidor & Jouko Väänänen - 2011 - Journal of Mathematical Logic 11 (1):87-113.
    We show that, assuming the consistency of a supercompact cardinal, the first inaccessible cardinal can satisfy a strong form of a Löwenheim–Skolem–Tarski theorem for the equicardinality logic L, a logic introduced in [5] strictly between first order logic and second order logic. On the other hand we show that in the light of present day inner model technology, nothing short of a supercompact cardinal suffices for this result. In particular, we show that the Löwenheim–Skolem–Tarski theorem for the equicardinality logic at (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The covering lemma up to a Woodin cardinal.W. J. Mitchell, E. Schimmerling & J. R. Steel - 1997 - Annals of Pure and Applied Logic 84 (2):219-255.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Covering theorems for the core model, and an application to stationary set reflection.Sean Cox - 2010 - Annals of Pure and Applied Logic 161 (1):66-93.
    We prove covering theorems for K, where K is the core model below the sharp for a strong cardinal, and give an application to stationary set reflection.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • δ-Logics and generalized quantifiers.J. A. Makowsky - 1976 - Annals of Mathematical Logic 10 (2):155-192.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • First order predicate logic with generalized quantifiers.Per Lindström - 1966 - Theoria 32 (3):186--195.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • $K$ without the measurable.Ronald Jensen & John Steel - 2013 - Journal of Symbolic Logic 78 (3):708-734.
    We show in ZFC that if there is no proper class inner model with a Woodin cardinal, then there is an absolutely definablecore modelthat is close toVin various ways.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is precipitous" and strengthenings (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations