Switch to: Citations

Add references

You must login to add references.
  1. Rational approximations to rational models: Alternative algorithms for category learning.Adam N. Sanborn, Thomas L. Griffiths & Daniel J. Navarro - 2010 - Psychological Review 117 (4):1144-1167.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Structured statistical models of inductive reasoning.Charles Kemp & Joshua B. Tenenbaum - 2009 - Psychological Review 116 (1):20-58.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge.Thomas K. Landauer & Susan T. Dumais - 1997 - Psychological Review 104 (2):211-240.
    Download  
     
    Export citation  
     
    Bookmark   356 citations  
  • (1 other version)ALCOVE: An exemplar-based connectionist model of category learning.John K. Kruschke - 1992 - Psychological Review 99 (1):22-44.
    Download  
     
    Export citation  
     
    Bookmark   226 citations  
  • Rule-plus-exception model of classification learning.Robert M. Nosofsky, Thomas J. Palmeri & Stephen C. McKinley - 1994 - Psychological Review 101 (1):53-79.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • SUSTAIN: A Network Model of Category Learning.Bradley C. Love, Douglas L. Medin & Todd M. Gureckis - 2004 - Psychological Review 111 (2):309-332.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Context theory of classification learning.Douglas L. Medin & Marguerite M. Schaffer - 1978 - Psychological Review 85 (3):207-238.
    Download  
     
    Export citation  
     
    Bookmark   404 citations  
  • Word and Object.Willard Van Orman Quine - 1960 - Les Etudes Philosophiques 17 (2):278-279.
    Download  
     
    Export citation  
     
    Bookmark   2887 citations  
  • A Rational Analysis of Rule‐Based Concept Learning.Noah D. Goodman, Joshua B. Tenenbaum, Jacob Feldman & Thomas L. Griffiths - 2008 - Cognitive Science 32 (1):108-154.
    This article proposes a new model of human concept learning that provides a rational analysis of learning feature‐based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space—a concept language of logical rules. This article compares the model predictions to human generalization judgments in several well‐known category learning experiments, and finds good agreement for both average and individual participant generalizations. This article further investigates judgments for a broad set of 7‐feature concepts—a more natural setting in several (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • (1 other version)Fact, Fiction, and Forecast.Nelson Goodman - 1955 - Philosophy 31 (118):268-269.
    Download  
     
    Export citation  
     
    Bookmark   736 citations  
  • Topics in semantic representation.Thomas L. Griffiths, Mark Steyvers & Joshua B. Tenenbaum - 2007 - Psychological Review 114 (2):211-244.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Cooperative inference: Features, objects, and collections.Sophia Ray Searcy & Patrick Shafto - 2016 - Psychological Review 123 (5):510-533.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naïve and Robust: Class‐Conditional Independence in Human Classification Learning.Jana B. Jarecki, Björn Meder & Jonathan D. Nelson - 2018 - Cognitive Science 42 (1):4-42.
    Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference problem, allows for informed inferences about novel feature combinations, and performs robustly across different statistical environments. We designed a new Bayesian classification learning model that incorporates varying degrees of prior belief in class-conditional independence, learns whether or not independence holds, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical theory of concept identification.Lyle E. Bourne & Frank Restle - 1959 - Psychological Review 66 (5):278-296.
    Download  
     
    Export citation  
     
    Bookmark   7 citations