Switch to: References

Add citations

You must login to add citations.
  1. Don't trust Fodor's guide in Monte Carlo: Learning concepts by hypothesis testing without circularity.Michael Deigan - 2023 - Mind and Language 38 (2):355-373.
    Fodor argued that learning a concept by hypothesis testing would involve an impossible circularity. I show that Fodor's argument implicitly relies on the assumption that actually φ-ing entails an ability to φ. But this assumption is false in cases of φ-ing by luck, and just such luck is involved in testing hypotheses with the kinds of generative random sampling methods that many cognitive scientists take our minds to use. Concepts thus can be learned by hypothesis testing without circularity, and it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Computational Origin of Representation.Steven T. Piantadosi - 2020 - Minds and Machines 31 (1):1-58.
    Each of our theories of mental representation provides some insight into how the mind works. However, these insights often seem incompatible, as the debates between symbolic, dynamical, emergentist, sub-symbolic, and grounded approaches to cognition attest. Mental representations—whatever they are—must share many features with each of our theories of representation, and yet there are few hypotheses about how a synthesis could be possible. Here, I develop a theory of the underpinnings of symbolic cognition that shows how sub-symbolic dynamics may give rise (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Rational Learners and Moral Rules.Shaun Nichols, Shikhar Kumar, Theresa Lopez, Alisabeth Ayars & Hoi-Yee Chan - 2016 - Mind and Language 31 (5):530-554.
    People draw subtle distinctions in the normative domain. But it remains unclear exactly what gives rise to such distinctions. On one prominent approach, emotion systems trigger non-utilitarian judgments. The main alternative, inspired by Chomskyan linguistics, suggests that moral distinctions derive from an innate moral grammar. In this article, we draw on Bayesian learning theory to develop a rational learning account. We argue that the ‘size principle’, which is implicated in word learning, can also explain how children would use scant and (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Towards a pattern-based logic of probability judgements and logical inclusion “fallacies”.Momme von Sydow - 2016 - Thinking and Reasoning 22 (3):297-335.
    ABSTRACTProbability judgements entail a conjunction fallacy if a conjunction is estimated to be more probable than one of its conjuncts. In the context of predication of alternative logical hypothesis, Bayesian logic provides a formalisation of pattern probabilities that renders a class of pattern-based CFs rational. BL predicts a complete system of other logical inclusion fallacies. A first test of this prediction is investigated here, using transparent tasks with clear set inclusions, varying in observed frequencies only. Experiment 1 uses data where (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rational analysis, intractability, and the prospects of ‘as if’-explanations.Iris van Rooij, Johan Kwisthout, Todd Wareham & Cory Wright - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • One and Done? Optimal Decisions From Very Few Samples.Edward Vul, Noah Goodman, Thomas L. Griffiths & Joshua B. Tenenbaum - 2014 - Cognitive Science 38 (4):599-637.
    In many learning or inference tasks human behavior approximates that of a Bayesian ideal observer, suggesting that, at some level, cognition can be described as Bayesian inference. However, a number of findings have highlighted an intriguing mismatch between human behavior and standard assumptions about optimality: People often appear to make decisions based on just one or a few samples from the appropriate posterior probability distribution, rather than using the full distribution. Although sampling-based approximations are a common way to implement Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • A tutorial introduction to Bayesian models of cognitive development.Amy Perfors, Joshua B. Tenenbaum, Thomas L. Griffiths & Fei Xu - 2011 - Cognition 120 (3):302-321.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Modeling human performance in statistical word segmentation.Michael C. Frank, Sharon Goldwater, Thomas L. Griffiths & Joshua B. Tenenbaum - 2010 - Cognition 117 (2):107-125.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Rational variability in children’s causal inferences: The Sampling Hypothesis.Stephanie Denison, Elizabeth Bonawitz, Alison Gopnik & Thomas L. Griffiths - 2013 - Cognition 126 (2):285-300.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Bootstrapping in a language of thought: A formal model of numerical concept learning.Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman - 2012 - Cognition 123 (2):199-217.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Learning the Form of Causal Relationships Using Hierarchical Bayesian Models.Christopher G. Lucas & Thomas L. Griffiths - 2010 - Cognitive Science 34 (1):113-147.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Computing Machinery and Understanding.Michael Ramscar - 2010 - Cognitive Science 34 (6):966-971.
    How are natural symbol systems best understood? Traditional “symbolic” approaches seek to understand cognition by analogy to highly structured, prescriptive computer programs. Here, we describe some problems the traditional computational metaphor inevitably leads to, and a very different approach to computation (Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010; Turing, 1950) that allows these problems to be avoided. The way we conceive of natural symbol systems depends to a large degree on the computational metaphors we use to understand them, and machine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Role of Explanation in Discovery and Generalization: Evidence From Category Learning.Joseph J. Williams & Tania Lombrozo - 2010 - Cognitive Science 34 (5):776-806.
    Research in education and cognitive development suggests that explaining plays a key role in learning and generalization: When learners provide explanations—even to themselves—they learn more effectively and generalize more readily to novel situations. This paper proposes and tests a subsumptive constraints account of this effect. Motivated by philosophical theories of explanation, this account predicts that explaining guides learners to interpret what they are learning in terms of unifying patterns or regularities, which promotes the discovery of broad generalizations. Three experiments provide (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Exploring the hierarchical structure of human plans via program generation.Carlos G. Correa, Sophia Sanborn, Mark K. Ho, Frederick Callaway, Nathaniel D. Daw & Thomas L. Griffiths - 2025 - Cognition 255 (C):105990.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantifiers satisfying semantic universals have shorter minimal description length.Iris van de Pol, Paul Lodder, Leendert van Maanen, Shane Steinert-Threlkeld & Jakub Szymanik - 2023 - Cognition 232 (C):105150.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The best game in town: The reemergence of the language-of-thought hypothesis across the cognitive sciences.Jake Quilty-Dunn, Nicolas Porot & Eric Mandelbaum - 2023 - Behavioral and Brain Sciences 46:e261.
    Mental representations remain the central posits of psychology after many decades of scrutiny. However, there is no consensus about the representational format(s) of biological cognition. This paper provides a survey of evidence from computational cognitive psychology, perceptual psychology, developmental psychology, comparative psychology, and social psychology, and concludes that one type of format that routinely crops up is the language-of-thought (LoT). We outline six core properties of LoTs: (i) discrete constituents; (ii) role-filler independence; (iii) predicate–argument structure; (iv) logical operators; (v) inferential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Habituation Reflects Optimal Exploration Over Noisy Perceptual Samples.Anjie Cao, Gal Raz, Rebecca Saxe & Michael C. Frank - 2023 - Topics in Cognitive Science 15 (2):290-302.
    This paper presents the Rational Action, Noisy Choice for Habituation (RANCH) model. The model was evaluated with adult looking time collected from a paradigm analogous to the infant habituation paradigm. And the model captured key patterns of looking time documented in developmental research: habituation and dishabituation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Functional Contextual Account of Background Knowledge in Categorization: Implications for Artificial General Intelligence and Cognitive Accounts of General Knowledge.Darren J. Edwards, Ciara McEnteggart & Yvonne Barnes-Holmes - 2022 - Frontiers in Psychology 13:745306.
    Psychology has benefited from an enormous wealth of knowledge about processes of cognition in relation to how the brain organizes information. Within the categorization literature, this behavior is often explained through theories of memory construction called exemplar theory and prototype theory which are typically based on similarity or rule functions as explanations of how categories emerge. Although these theories work well at modeling highly controlled stimuli in laboratory settings, they often perform less well outside of these settings, such as explaining (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Explanation of the Veridical Uniformity Universal.Shane Steinert-Threlkeld - forthcoming - Journal of Semantics.
    A semantic universal, which we here dub the Veridical Uniformity Universal, has recently been argued to hold of responsive verbs (those that take both declarative and interrogative complements). This paper offers a preliminary explanation of this universal: verbs satisfying it are easier to learn than those that do not. This claim is supported by a computational experiment using artificial neural networks, mirroring a recent proposal for explaining semantic universals of quantifiers. This preliminary study opens up many avenues for future work (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Beyond Boolean logic: exploring representation languages for learning complex concepts.Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman - 2010 - In S. Ohlsson & R. Catrambone (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Cognitive Science Society. pp. 859--864.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conceptual complexity and the bias/variance tradeoff.Erica Briscoe & Jacob Feldman - 2011 - Cognition 118 (1):2-16.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The acquisition of Boolean concepts.Geoffrey P. Goodwin & Philip N. Johnson-Laird - 2013 - Trends in Cognitive Sciences 17 (3):128-133.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.Matt Jones & Bradley C. Love - 2011 - Behavioral and Brain Sciences 34 (4):169-188.
    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology – namely, Behaviorism and evolutionary psychology – that set aside mechanistic explanations or make use of optimality assumptions. Through (...)
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Solving Bongard Problems With a Visual Language and Pragmatic Constraints.Stefan Depeweg, Contantin A. Rothkopf & Frank Jäkel - 2024 - Cognitive Science 48 (5):e13432.
    More than 50 years ago, Bongard introduced 100 visual concept learning problems as a challenge for artificial vision systems. These problems are now known as Bongard problems. Although they are well known in cognitive science and artificial intelligence, only very little progress has been made toward building systems that can solve a substantial subset of them. In the system presented here, visual features are extracted through image processing and then translated into a symbolic visual vocabulary. We introduce a formal language (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Compositional diversity in visual concept learning.Yanli Zhou, Reuben Feinman & Brenden M. Lake - 2024 - Cognition 244 (C):105711.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The reemergence of the language-of-thought hypothesis: Consequences for the development of the logic of thought.Nicolò Cesana-Arlotti - 2023 - Behavioral and Brain Sciences 46:e268.
    Quilty-Dunn et al. defended the reemergence of language-of-thought hypothesis (LoTH). My commentary builds up implications for the study of the development of our logical capacities. Empirical support for logically augmented LoT systems calls for the investigation of their logical primitives and developmental origin. Furthermore, Quilty-Dunn et al.'s characterization of LoT helps the quest for the foundation of logic by dissociating logical cognition from natural language.
    Download  
     
    Export citation  
     
    Bookmark  
  • Concept learning in a probabilistic language-of-thought. How is it possible and what does it presuppose?Matteo Colombo - 2023 - Behavioral and Brain Sciences 46:e271.
    Where does a probabilistic language-of-thought (PLoT) come from? How can we learn new concepts based on probabilistic inferences operating on a PLoT? Here, I explore these questions, sketching a traditional circularity objection to LoT and canvassing various approaches to addressing it. I conclude that PLoT-based cognitive architectures can support genuine concept learning; but, currently, it is unclear that they enjoy more explanatory breadth in relation to concept learning than alternative architectures that do not posit any LoT.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Boolean Language of Thought is recoverable from learning data.Fausto Carcassi & Jakub Szymanik - 2023 - Cognition 239 (C):105541.
    Download  
     
    Export citation  
     
    Bookmark  
  • Critique of pure Bayesian cognitive science: A view from the philosophy of science.Vincenzo Crupi & Fabrizio Calzavarini - 2023 - European Journal for Philosophy of Science 13 (3):1-17.
    Bayesian approaches to human cognition have been extensively advocated in the last decades, but sharp objections have been raised too within cognitive science. In this paper, we outline a diagnosis of what has gone wrong with the prevalent strand of Bayesian cognitive science (here labelled pure Bayesian cognitive science), relying on selected illustrations from the psychology of reasoning and tools from the philosophy of science. Bayesians’ reliance on so-called method of rational analysis is a key point of our discussion. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cross‐Situational Word Learning With Multimodal Neural Networks.Wai Keen Vong & Brenden M. Lake - 2022 - Cognitive Science 46 (4).
    Cognitive Science, Volume 46, Issue 4, April 2022.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why Higher Working Memory Capacity May Help You Learn: Sampling, Search, and Degrees of Approximation.Kevin Lloyd, Adam Sanborn, David Leslie & Stephan Lewandowsky - 2019 - Cognitive Science 43 (12):e12805.
    Algorithms for approximate Bayesian inference, such as those based on sampling (i.e., Monte Carlo methods), provide a natural source of models of how people may deal with uncertainty with limited cognitive resources. Here, we consider the idea that individual differences in working memory capacity (WMC) may be usefully modeled in terms of the number of samples, or “particles,” available to perform inference. To test this idea, we focus on two recent experiments that report positive associations between WMC and two distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representing composed meanings through temporal binding.Hugh Rabagliati, Leonidas A. A. Doumas & Douglas K. Bemis - 2017 - Cognition 162:61-72.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A probabilistic model of cross-categorization.Patrick Shafto, Charles Kemp, Vikash Mansinghka & Joshua B. Tenenbaum - 2011 - Cognition 120 (1):1-25.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Rational learners and parochial norms.Scott Partington, Shaun Nichols & Tamar Kushnir - 2023 - Cognition 233 (C):105366.
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation impacts hypothesis generation, but not evaluation, during learning.Erik Brockbank & Caren M. Walker - 2022 - Cognition 225 (C):105100.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ease of learning explains semantic universals.Shane Steinert-Threlkeld & Jakub Szymanik - 2020 - Cognition 195:104076.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • When Absence of Evidence Is Evidence of Absence: Rational Inferences From Absent Data.Anne S. Hsu, Andy Horng, Thomas L. Griffiths & Nick Chater - 2017 - Cognitive Science 41 (S5):1155-1167.
    Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event never occurs. A rational analysis using Bayesian inference predicts that inferences from absent data should depend on how much the absence is expected to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structured statistical models of inductive reasoning.Charles Kemp & Joshua B. Tenenbaum - 2009 - Psychological Review 116 (1):20-58.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • An Evolutionary Analysis of Learned Attention.Richard A. Hullinger, John K. Kruschke & Peter M. Todd - 2015 - Cognitive Science 39 (6):1172-1215.
    Humans and many other species selectively attend to stimuli or stimulus dimensions—but why should an animal constrain information input in this way? To investigate the adaptive functions of attention, we used a genetic algorithm to evolve simple connectionist networks that had to make categorization decisions in a variety of environmental structures. The results of these simulations show that while learned attention is not universally adaptive, its benefit is not restricted to the reduction of input complexity in order to keep it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three ideal observer models for rule learning in simple languages.Michael C. Frank & Joshua B. Tenenbaum - 2011 - Cognition 120 (3):360-371.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Exploring the conceptual universe.Charles Kemp - 2012 - Psychological Review 119 (4):685-722.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Sticking to the Evidence? A Behavioral and Computational Case Study of Micro‐Theory Change in the Domain of Magnetism.Elizabeth Bonawitz, Tomer D. Ullman, Sophie Bridgers, Alison Gopnik & Joshua B. Tenenbaum - 2019 - Cognitive Science 43 (8):e12765.
    Constructing an intuitive theory from data confronts learners with a “chicken‐and‐egg” problem: The laws can only be expressed in terms of the theory's core concepts, but these concepts are only meaningful in terms of the role they play in the theory's laws; how can a learner discover appropriate concepts and laws simultaneously, knowing neither to begin with? We explore how children can solve this chicken‐and‐egg problem in the domain of magnetism, drawing on perspectives from computational modeling and behavioral experiments. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bayesian learning and the psychology of rule induction.Ansgar D. Endress - 2013 - Cognition 127 (2):159-176.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Role of Naturalness in Concept Learning: A Computational Study.Igor Douven - 2023 - Minds and Machines 33 (4):695-714.
    This paper studies the learnability of natural concepts in the context of the conceptual spaces framework. Previous work proposed that natural concepts are represented by the cells of optimally partitioned similarity spaces, where optimality was defined in terms of a number of constraints. Among these is the constraint that optimally partitioned similarity spaces result in easily learnable concepts. While there is evidence that systems of concepts generally regarded as natural satisfy a number of the proposed optimality constraints, the connection between (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Meta-learning as a bridge between neural networks and symbolic Bayesian models.R. Thomas McCoy & Thomas L. Griffiths - 2024 - Behavioral and Brain Sciences 47:e155.
    Meta-learning is even more broadly relevant to the study of inductive biases than Binz et al. suggest: Its implications go beyond the extensions to rational analysis that they discuss. One noteworthy example is that meta-learning can act as a bridge between the vector representations of neural networks and the symbolic hypothesis spaces used in many Bayesian models.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Context‐Dependent Bayesian Account for Causal‐Based Categorization.Nicolás Marchant, Tadeg Quillien & Sergio E. Chaigneau - 2023 - Cognitive Science 47 (1):e13240.
    The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with a certain combination of features, given the category's causal model) or as a posterior computation (i.e., the probability that the exemplar belongs to the category, given its features). Across three (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coevolution of Lexical Meaning and Pragmatic Use.Thomas Brochhagen, Michael Franke & Robert van Rooij - 2018 - Cognitive Science 42 (8):2757-2789.
    According to standard linguistic theory, the meaning of an utterance is the product of conventional semantic meaning and general pragmatic rules on language use. We investigate how such a division of labor between semantics and pragmatics could evolve under general processes of selection and learning. We present a game‐theoretic model of the competition between types of language users, each endowed with certain lexical representations and a particular pragmatic disposition to act on them. Our model traces two evolutionary forces and their (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ingredients of intelligence: From classic debates to an engineering roadmap.Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum & Samuel J. Gershman - 2017 - Behavioral and Brain Sciences 40:e281.
    We were encouraged by the broad enthusiasm for building machines that learn and think in more human-like ways. Many commentators saw our set of key ingredients as helpful, but there was disagreement regarding the origin and structure of those ingredients. Our response covers three main dimensions of this disagreement: nature versus nurture, coherent theories versus theory fragments, and symbolic versus sub-symbolic representations. These dimensions align with classic debates in artificial intelligence and cognitive science, although, rather than embracing these debates, we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Meaning and reference from a probabilistic point of view.Jacob Feldman & Lee-Sun Choi - 2022 - Cognition 223 (C):105058.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Do Additional Features Help or Hurt Category Learning? The Curse of Dimensionality in Human Learners.Wai Keen Vong, Andrew T. Hendrickson, Danielle J. Navarro & Andrew Perfors - 2019 - Cognitive Science 43 (3).
    Download  
     
    Export citation  
     
    Bookmark   1 citation