Switch to: References

Add citations

You must login to add citations.
  1. Representation in Cognitive Science.Nicholas Shea - 2018 - Oxford University Press.
    How can we think about things in the outside world? There is still no widely accepted theory of how mental representations get their meaning. In light of pioneering research, Nicholas Shea develops a naturalistic account of the nature of mental representation with a firm focus on the subpersonal representations that pervade the cognitive sciences.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Characteristics of dissociable human learning systems.David R. Shanks & Mark F. St John - 1994 - Behavioral and Brain Sciences 17 (3):367-447.
    A number of ways of taxonomizing human learning have been proposed. We examine the evidence for one such proposal, namely, that there exist independent explicit and implicit learning systems. This combines two further distinctions, (1) between learning that takes place with versus without concurrent awareness, and (2) between learning that involves the encoding of instances (or fragments) versus the induction of abstract rules or hypotheses. Implicit learning is assumed to involve unconscious rule learning. We examine the evidence for implicit learning (...)
    Download  
     
    Export citation  
     
    Bookmark   210 citations  
  • Word learning as Bayesian inference.Fei Xu & Joshua B. Tenenbaum - 2007 - Psychological Review 114 (2):245-272.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Models and mechanisms in psychological explanation.Daniel A. Weiskopf - 2011 - Synthese 183 (3):313-338.
    Mechanistic explanation has an impressive track record of advancing our understanding of complex, hierarchically organized physical systems, particularly biological and neural systems. But not every complex system can be understood mechanistically. Psychological capacities are often understood by providing cognitive models of the systems that underlie them. I argue that these models, while superficially similar to mechanistic models, in fact have a substantially more complex relation to the real underlying system. They are typically constructed using a range of techniques for abstracting (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Theory-based Bayesian models of inductive learning and reasoning.Joshua B. Tenenbaum, Thomas L. Griffiths & Charles Kemp - 2006 - Trends in Cognitive Sciences 10 (7):309-318.
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Rule-plus-exception model of classification learning.Robert M. Nosofsky, Thomas J. Palmeri & Stephen C. McKinley - 1994 - Psychological Review 101 (1):53-79.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Generalization, similarity, and bayesian inference.Joshua B. Tenenbaum & Thomas L. Griffiths - 2001 - Behavioral and Brain Sciences 24 (4):629-640.
    Shepard has argued that a universal law should govern generalization across different domains of perception and cognition, as well as across organisms from different species or even different planets. Starting with some basic assumptions about natural kinds, he derived an exponential decay function as the form of the universal generalization gradient, which accords strikingly well with a wide range of empirical data. However, his original formulation applied only to the ideal case of generalization from a single encountered stimulus to a (...)
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • SUSTAIN: A Network Model of Category Learning.Bradley C. Love, Douglas L. Medin & Todd M. Gureckis - 2004 - Psychological Review 111 (2):309-332.
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • A Rational Analysis of Rule‐Based Concept Learning.Noah D. Goodman, Joshua B. Tenenbaum, Jacob Feldman & Thomas L. Griffiths - 2008 - Cognitive Science 32 (1):108-154.
    This article proposes a new model of human concept learning that provides a rational analysis of learning feature‐based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space—a concept language of logical rules. This article compares the model predictions to human generalization judgments in several well‐known category learning experiments, and finds good agreement for both average and individual participant generalizations. This article further investigates judgments for a broad set of 7‐feature concepts—a more natural setting in several (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • An exemplar-based random walk model of speeded classification.Robert M. Nosofsky & Thomas J. Palmeri - 1997 - Psychological Review 104 (2):266-300.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Structured statistical models of inductive reasoning.Charles Kemp & Joshua B. Tenenbaum - 2009 - Psychological Review 116 (1):20-58.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • On the nature and scope of featural representations of word meaning.Ken McRae, Virginia R. de Sa & Mark S. Seidenberg - 1997 - Journal of Experimental Psychology 126 (2):99-130.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Language Evolution by Iterated Learning With Bayesian Agents.Thomas L. Griffiths & Michael L. Kalish - 2007 - Cognitive Science 31 (3):441-480.
    Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute a posterior distribution over languages by combining a prior (representing their inductive biases) with the evidence provided by linguistic data. We show that when learners sample languages from this posterior (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Above and beyond the concrete: The diverse representational substrates of the predictive brain.Michael Gilead, Yaacov Trope & Nira Liberman - 2020 - Behavioral and Brain Sciences 43:e121.
    In recent years, scientists have increasingly taken to investigate the predictive nature of cognition. We argue that prediction relies on abstraction, and thus theories of predictive cognition need an explicit theory of abstract representation. We propose such a theory of the abstract representational capacities that allow humans to transcend the “here-and-now.” Consistent with the predictive cognition literature, we suggest that the representational substrates of the mind are built as ahierarchy, ranging from the concrete to the abstract; however, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • From Perceptual Categories to Concepts: What Develops?Vladimir M. Sloutsky - 2010 - Cognitive Science 34 (7):1244-1286.
    People are remarkably smart: They use language, possess complex motor skills, make nontrivial inferences, develop and use scientific theories, make laws, and adapt to complex dynamic environments. Much of this knowledge requires concepts and this study focuses on how people acquire concepts. It is argued that conceptual development progresses from simple perceptual grouping to highly abstract scientific concepts. This proposal of conceptual development has four parts. First, it is argued that categories in the world have different structure. Second, there might (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • The Interaction of the Explicit and the Implicit in Skill Learning: A Dual-Process Approach.Ron Sun - 2005 - Psychological Review 112 (1):159-192.
    This article explicates the interaction between implicit and explicit processes in skill learning, in contrast to the tendency of researchers to study each type in isolation. It highlights various effects of the interaction on learning (including synergy effects). The authors argue for an integrated model of skill learning that takes into account both implicit and explicit processes. Moreover, they argue for a bottom-up approach (first learning implicit knowledge and then explicit knowledge) in the integrated model. A variety of qualitative data (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Bayesian reverse-engineering considered as a research strategy for cognitive science.Carlos Zednik & Frank Jäkel - 2016 - Synthese 193 (12):3951-3985.
    Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • From implicit skills to explicit knowledge: a bottom‐up model of skill learning.Edward Merrillb & Todd Petersonb - 2001 - Cognitive Science 25 (2):203-244.
    This paper presents a skill learning model CLARION. Different from existing models of mostly high-level skill learning that use a top-down approach (that is, turning declarative knowledge into procedural knowledge through practice), we adopt a bottom-up approach toward low-level skill learning, where procedural knowledge develops first and declarative knowledge develops later. Our model is formed by integrating connectionist, reinforcement, and symbolic learning methods to perform on-line reactive learning. It adopts a two-level dual-representation framework (Sun, 1995), with a combination of localist (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Connectionist and diffusion models of reaction time.Roger Ratcliff, Trisha Van Zandt & Gail McKoon - 1999 - Psychological Review 106 (2):261-300.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Mechanisms and Model-Based Functional Magnetic Resonance Imaging.Mark Povich - 2015 - Philosophy of Science 82 (5):1035-1046.
    Mechanistic explanations satisfy widely held norms of explanation: the ability to manipulate and answer counterfactual questions about the explanandum phenomenon. A currently debated issue is whether any nonmechanistic explanations can satisfy these explanatory norms. Weiskopf argues that the models of object recognition and categorization, JIM, SUSTAIN, and ALCOVE, are not mechanistic yet satisfy these norms of explanation. In this article I argue that these models are mechanism sketches. My argument applies recent research using model-based functional magnetic resonance imaging, a novel (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Naming in young children: a dumb attentional mechanism?Linda B. Smith, Susan S. Jones & Barbara Landau - 1996 - Cognition 60 (2):143-171.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Functional kinds: a skeptical look.Cameron Buckner - 2015 - Synthese 192 (12):3915-3942.
    The functionalist approach to kinds has suffered recently due to its association with law-based approaches to induction and explanation. Philosophers of science increasingly view nomological approaches as inappropriate for the special sciences like psychology and biology, which has led to a surge of interest in approaches to natural kinds that are more obviously compatible with mechanistic and model-based methods, especially homeostatic property cluster theory. But can the functionalist approach to kinds be weaned off its dependency on laws? Dan Weiskopf has (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Alternative strategies of categorization.Edward E. Smith, Andrea L. Patalano & John Jonides - 1998 - Cognition 65 (2-3):167-196.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • An instance theory of attention and memory.Gordon D. Logan - 2002 - Psychological Review 109 (2):376-400.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience.Jeffrey S. Bowers - 2009 - Psychological Review 116 (1):220-251.
    A fundamental claim associated with parallel distributed processing theories of cognition is that knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that knowledge is coded in a localist fashion, with words, objects, and simple concepts, that is, coded with their own dedicated representations. One of the putative advantages of this approach is that the theories are biologically plausible. Indeed, advocates of the PDP approach often highlight the close parallels between distributed representations learned (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Hebbian paradigm reintegrated: Local reverberations as internal representations.Daniel J. Amit - 1995 - Behavioral and Brain Sciences 18 (4):617-626.
    The neurophysiological evidence from the Miyashita group's experiments on monkeys as well as cognitive experience common to us all suggests that local neuronal spike rate distributions might persist in the absence of their eliciting stimulus. In Hebb's cell-assembly theory, learning dynamics stabilize such self-maintaining reverberations. Quasi-quantitive modeling of the experimental data on internal representations in association-cortex modules identifies the reverberations (delay spike activity) as the internal code (representation). This leads to cognitive and neurophysiological predictions, many following directly from the language (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Finding categories through words: More nameable features improve category learning.Martin Zettersten & Gary Lupyan - 2020 - Cognition 196 (C):104135.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Time-scale dynamics and the development of an embodied cognition.Esther Thelen - 1995 - In Tim van Gelder & Robert Port (eds.), Mind As Motion: Explorations in the Dynamics of Cognition. MIT Press. pp. 69--100.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • On the Validity of Simulating Stagewise Development by Means of PDP Networks: Application of Catastrophe Analysis and an Experimental Test of Rule‐Like Network Performance.Maartje E. J. Raijmakers, Sylvester Koten & Peter C. M. Molenaar - 1996 - Cognitive Science 20 (1):101-136.
    This article addresses the ability of Parallel Distributed Processing (PDP) networks to generate stagewise cognitive development in accordance with Piaget's theory of cognitive epigenesis. We carried out a replication study of the simulation experiments by McClelland (1989) and McClelland and Jenkins (1991) in which a PDP network learns to solve balance scale problems. In objective tests motivated from catastrophe theory, a mathematical theory of transitions in epigenetical systems, no evidence for stage transitions in network performance was found. It is concluded (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Emergence of Words: Attentional Learning in Form and Meaning.Terry Regier - 2005 - Cognitive Science 29 (6):819-865.
    Children improve at word learning during the 2nd year of life—sometimes dramatically. This fact has suggested a change in mechanism, from associative learning to a more referential form of learning. This article presents an associative exemplar‐based model that accounts for the improvement without a change in mechanism. It provides a unified account of children's growing abilities to (a) learn a new word given only 1 or a few training trials (“fast mapping”); (b) acquire words that differ only slightly in phonological (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Reasons to doubt the present evidence for metaphoric representation.G. Murphy - 1997 - Cognition 62 (1):99-108.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Causal models and the acquisition of category structure.Michael R. Waldmann, Keith J. Holyoak & Angela Fratianne - 1995 - Journal of Experimental Psychology: General 124 (2):181.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations.Joshua C. Peterson, Joshua T. Abbott & Thomas L. Griffiths - 2018 - Cognitive Science 42 (8):2648-2669.
    Decades of psychological research have been aimed at modeling how people learn features and categories. The empirical validation of these theories is often based on artificial stimuli with simple representations. Recently, deep neural networks have reached or surpassed human accuracy on tasks such as identifying objects in natural images. These networks learn representations of real‐world stimuli that can potentially be leveraged to capture psychological representations. We find that state‐of‐the‐art object classification networks provide surprisingly accurate predictions of human similarity judgments for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Exemplar effects in categorization and multiple-cue judgment.Peter Juslin, Henrik Olsson & Anna-Carin Olsson - 2003 - Journal of Experimental Psychology: General 132 (1):133.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Diagnostic recognition: task constraints, object information, and their interactions.Philippe G. Schyns - 1998 - Cognition 67 (1-2):147-179.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Knowledge as Process: Contextually Cued Attention and Early Word Learning.Linda B. Smith, Eliana Colunga & Hanako Yoshida - 2010 - Cognitive Science 34 (7):1287-1314.
    Learning depends on attention. The processes that cue attention in the moment dynamically integrate learned regularities and immediate contextual cues. This paper reviews the extensive literature on cued attention and attentional learning in the adult literature and proposes that these fundamental processes are likely significant mechanisms of change in cognitive development. The value of this idea is illustrated using phenomena in children's novel word learning.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Similarity and rules: distinct? exhaustive? empirically distinguishable?Ulrike Hahn & Nick Chater - 1998 - Cognition 65 (2-3):197-230.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Précis of semantic cognition: A parallel distributed processing approach.Timothy T. Rogers & James L. McClelland - 2008 - Behavioral and Brain Sciences 31 (6):689-714.
    In this prcis we focus on phenomena central to the reaction against similarity-based theories that arose in the 1980s and that subsequently motivated the approach to semantic knowledge. Specifically, we consider (1) how concepts differentiate in early development, (2) why some groupings of items seem to form or coherent categories while others do not, (3) why different properties seem central or important to different concepts, (4) why children and adults sometimes attest to beliefs that seem to contradict their direct experience, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • PROBabilities from EXemplars (PROBEX): a “lazy” algorithm for probabilistic inference from generic knowledge.Peter Juslin & Magnus Persson - 2002 - Cognitive Science 26 (5):563-607.
    PROBEX (PROBabilities from EXemplars), a model of probabilistic inference and probability judgment based on generic knowledge is presented. Its properties are that: (a) it provides an exemplar model satisfying bounded rationality; (b) it is a “lazy” algorithm that presumes no pre‐computed abstractions; (c) it implements a hybrid‐representation, similarity‐graded probability. We investigate the ecological rationality of PROBEX and find that it compares favorably with Take‐The‐Best and multiple regression (Gigerenzer, Todd, & the ABC Research Group, 1999). PROBEX is fitted to the point (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Word Meanings Evolve to Selectively Preserve Distinctions on Salient Dimensions.Catriona Silvey, Simon Kirby & Kenny Smith - 2015 - Cognitive Science 39 (1):212-226.
    Words refer to objects in the world, but this correspondence is not one-to-one: Each word has a range of referents that share features on some dimensions but differ on others. This property of language is called underspecification. Parts of the lexicon have characteristic patterns of underspecification; for example, artifact nouns tend to specify shape, but not color, whereas substance nouns specify material but not shape. These regularities in the lexicon enable learners to generalize new words appropriately. How does the lexicon (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • What is adaptive about adaptive decision making? A parallel constraint satisfaction account.Andreas Glöckner, Benjamin E. Hilbig & Marc Jekel - 2014 - Cognition 133 (3):641-666.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Information-accumulation theory of speeded categorization.Koen Lamberts - 2000 - Psychological Review 107 (2):227-260.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Active inductive inference in children and adults: A constructivist perspective.Neil R. Bramley & Fei Xu - 2023 - Cognition 238 (C):105471.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A neurobiological theory of automaticity in perceptual categorization.F. Gregory Ashby, John M. Ennis & Brian J. Spiering - 2007 - Psychological Review 114 (3):632-656.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Locally Bayesian learning with applications to retrospective revaluation and highlighting.John K. Kruschke - 2006 - Psychological Review 113 (4):677-699.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Adaptationism.Steven Hecht Orzack - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The rules versus similarity distinction.Emmanuel M. Pothos - 2005 - Behavioral and Brain Sciences 28 (1):1-14.
    The distinction between rules and similarity is central to our understanding of much of cognitive psychology. Two aspects of existing research have motivated the present work. First, in different cognitive psychology areas we typically see different conceptions of rules and similarity; for example, rules in language appear to be of a different kind compared to rules in categorization. Second, rules processes are typically modeled as separate from similarity ones; for example, in a learning experiment, rules and similarity influences would be (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Tracking word frequency effects through 130 years of sound change.Jennifer B. Hay, Janet B. Pierrehumbert, Abby J. Walker & Patrick LaShell - 2015 - Cognition 139 (C):83-91.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Conceptual complexity and the bias/variance tradeoff.Erica Briscoe & Jacob Feldman - 2011 - Cognition 118 (1):2-16.
    Download  
     
    Export citation  
     
    Bookmark   12 citations