Switch to: Citations

Add references

You must login to add references.
  1. The Consistency of predicative fragments of frege's grundgesetze der arithmetik.Richard Heck Jnr - 1996 - History and Philosophy of Logic 17 (1 & 2):209-220.
    As is well-known, the formal system in which Frege works in his Grundgesetze der Arithmetik is formally inconsistent, Russell's Paradox being derivable in it.This system is, except for minor differences, full second-order logic, augmented by a single non-logical axiom, Frege's Axiom V. It has been known for some time now that the first-order fragment of the theory is consistent. The present paper establishes that both the simple and the ramified predicative second-order fragments are consistent, and that Robinson arithmetic, Q, is (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Dummett on Impredicativity.Alan Weir - 1998 - Grazer Philosophische Studien 55 (1):65-101.
    Gödel and others held that impredicative specification is illegitimate in a constructivist framework but legitimate elsewhere. Michael Dummett argues to the contrary that impredicativity, though not necessarily illicit, needs justification regardless of whether one assumes the context is realist or constructivist. In this paper I defend the Gödelian position arguing that Dummett seeks a reduction of impredicativity to predicativity which is neither possible nor necessary. The argument is illustrated by considering first highly predicative versions of the equinumerosity axiom for cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (2 other versions)What Is So Bad About Contradictions?Graham Priest - 1998 - Journal of Philosophy 95 (8):410–26.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Classical harmony.Alan Weir - 1986 - Notre Dame Journal of Formal Logic 27 (4):459-482.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the consistency of the first-order portion of Frege's logical system.Terence Parsons - 1987 - Notre Dame Journal of Formal Logic 28 (1):161-168.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory.Gregory H. Moore - 1980 - History and Philosophy of Logic 1 (1-2):95-137.
    What has been the historical relationship between set theory and logic? On the one hand, Zermelo and other mathematicians developed set theory as a Hilbert-style axiomatic system. On the other hand, set theory influenced logic by suggesting to Schröder, Löwenheim and others the use of infinitely long expressions. The questions of which logic was appropriate for set theory - first-order logic, second-order logic, or an infinitary logic - culminated in a vigorous exchange between Zermelo and Gödel around 1930.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The Consistency of predicative fragments of frege’s grundgesetze der arithmetik.Richard G. Heck - 1996 - History and Philosophy of Logic 17 (1-2):209-220.
    As is well-known, the formal system in which Frege works in his Grundgesetze der Arithmetik is formally inconsistent, Russell’s Paradox being derivable in it.This system is, except for minor differ...
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • On the necessary existence of numbers.Neil Tennant - 1997 - Noûs 31 (3):307-336.
    We examine the arguments on both sides of the recent debate (Hale and Wright v. Field) on the existence, and modal status, of the natural numbers. We formulate precisely, with proper attention to denotational commitments, the analytic conditionals that link talk of numbers with talk of numerosity and with counting. These provide conceptual controls on the concept of number. We argue, against Field, that there is a serious disanalogy between the existence of God and the existence of numbers. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (2 other versions)The Limits of Abstraction.Kit Fine - 2004 - Bulletin of Symbolic Logic 10 (4):554-557.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • (2 other versions)Replies.Kit Fine - 2005 - Philosophical Studies 122 (3):367-395.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • IX*—Saving Frege from Contradiction.George Boolos - 1987 - Proceedings of the Aristotelian Society 87 (1):137-152.
    George Boolos; IX*—Saving Frege from Contradiction, Proceedings of the Aristotelian Society, Volume 87, Issue 1, 1 June 1987, Pages 137–152, https://doi.org/10.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Naïve set theory is innocent!A. Weir - 1998 - Mind 107 (428):763-798.
    Naive set theory, as found in Frege and Russell, is almost universally believed to have been shown to be false by the set-theoretic paradoxes. The standard response has been to rank sets into one or other hierarchy. However it is extremely difficult to characterise the nature of any such hierarchy without falling into antinomies as severe as the set-theoretic paradoxes themselves. Various attempts to surmount this problem are examined and criticised. It is argued that the rejection of naive set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Induction and Indefinite Extensibility: The Gödel Sentence is True, but Did Someone Change the Subject?Stewart Shapiro - 1998 - Mind 107 (427):597-624.
    Over the last few decades Michael Dummett developed a rich program for assessing logic and the meaning of the terms of a language. He is also a major exponent of Frege's version of logicism in the philosophy of mathematics. Over the last decade, Neil Tennant developed an extensive version of logicism in Dummettian terms, and Dummett influenced other contemporary logicists such as Crispin Wright and Bob Hale. The purpose of this paper is to explore the prospects for Fregean logicism within (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘Neo-logicist‘ logic is not epistemically innocent.Stewart Shapiro & Alan Weir - 2000 - Philosophia Mathematica 8 (2):160--189.
    The neo-logicist argues tliat standard mathematics can be derived by purely logical means from abstraction principles—such as Hume's Principle— which are held to lie 'epistcmically innocent'. We show that the second-order axiom of comprehension applied to non-instantiated properties and the standard first-order existential instantiation and universal elimination principles are essential for the derivation of key results, specifically a theorem of infinity, but have not been shown to be epistemically innocent. We conclude that the epistemic innocence of mathematics has not been (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • New V, ZF and Abstraction.Stewart Shapiro & Alan Weir - 1999 - Philosophia Mathematica 7 (3):293-321.
    We examine George Boolos's proposed abstraction principle for extensions based on the limitation-of-size conception, New V, from several perspectives. Crispin Wright once suggested that New V could serve as part of a neo-logicist development of real analysis. We show that it fails both of the conservativeness criteria for abstraction principles that Wright proposes. Thus, we support Boolos against Wright. We also show that, when combined with the axioms for Boolos's iterative notion of set, New V yields a system equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • On the consistency of second-order contextual definitions.Richard Heck - 1992 - Noûs 26 (4):491-494.
    One of the earliest discussions of the so-called 'bad company' objection to Neo-Fregeanism, I show that the consistency of an arbitrary second-order 'contextual definition' (nowadays known as an 'abstraction principle' is recursively undecidable. I go on to suggest that an acceptable such principle should satisfy a condition nowadays known as 'stablity'.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Finitude and Hume’s Principle.Richard G. Heck - 1997 - Journal of Philosophical Logic 26 (6):589-617.
    The paper formulates and proves a strengthening of ‘Frege’s Theorem’, which states that axioms for second-order arithmetic are derivable in second-order logic from Hume’s Principle, which itself says that the number of Fs is the same as the number ofGs just in case the Fs and Gs are equinumerous. The improvement consists in restricting this claim to finite concepts, so that nothing is claimed about the circumstances under which infinite concepts have the same number. ‘Finite Hume’s Principle’ also suffices for (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Reals by Abstraction.Bob Hale - 2000 - Philosophia Mathematica 8 (2):100--123.
    On the neo-Fregean approach to the foundations of mathematics, elementary arithmetic is analytic in the sense that the addition of a principle wliich may be held to IMJ explanatory of the concept of cardinal number to a suitable second-order logical basis suffices for the derivation of its basic laws. This principle, now commonly called Hume's principle, is an example of a Fregean abstraction principle. In this paper, I assume the correctness of the neo-Fregean position on elementary aritlunetic and seek to (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Dummett on Impredicativity.Alan Weir - 1998 - Grazer Philosophische Studien 55 (1):65-101.
    Gödel and others held that impredicative specification is illegitimate in a constructivist framework but legitimate elsewhere. Michael Dummett argues to the contrary that impredicativity, though not necessarily illicit, needs justification regardless of whether one assumes the context is realist or constructivist. In this paper I defend the Gödelian position arguing that Dummett seeks a reduction of impredicativity to predicativity which is neither possible nor necessary. The argument is illustrated by considering first highly predicative versions of the equinumerosity axiom for cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations