Switch to: References

Add citations

You must login to add citations.
  1. Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics. [REVIEW]I. Grattan-Guinness - 2011 - Logica Universalis 5 (1):21-73.
    A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explanation by induction?Miguel Hoeltje, Benjamin Schnieder & Alex Steinberg - 2013 - Synthese 190 (3):509-524.
    Philosophers of mathematics commonly distinguish between explanatory and non-explanatory proofs. An important subclass of mathematical proofs are proofs by induction. Are they explanatory? This paper addresses the question, based on general principles about explanation. First, a recent argument for a negative answer is discussed and rebutted. Second, a case is made for a qualified positive take on the issue.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • A critical appraisal of second-order logic.Ignacio Jané - 1993 - History and Philosophy of Logic 14 (1):67-86.
    Because of its capacity to characterize mathematical concepts and structures?a capacity which first-order languages clearly lack?second-order languages recommend themselves as a convenient framework for much of mathematics, including set theory. This paper is about the credentials of second-order logic:the reasons for it to be considered logic, its relations with set theory, and especially the efficacy with which it performs its role of the underlying logic of set theory.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Traditional logic and the early history of sets, 1854-1908.José Ferreirós - 1996 - Archive for History of Exact Sciences 50 (1):5-71.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Completeness and categoricty, part II: 20th century metalogic to 21st century semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):77-92.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Zermelo and the Skolem paradox.Dirk Van Dalen & Heinz-Dieter Ebbinghaus - 2000 - Bulletin of Symbolic Logic 6 (2):145-161.
    On October 4, 1937, Zermelo composed a small note entitled “Der Relativismus in der Mengenlehre und der sogenannte Skolemsche Satz” in which he gives a refutation of “Skolem's paradox”, i.e., the fact that Zermelo-Fraenkel set theory—guaranteeing the existence of uncountably many sets—has a countable model. Compared with what he wished to disprove, the argument fails. However, at a second glance, it strongly documents his view of mathematics as based on a world of objects that could only be grasped adequately by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Zermelo's Cantorian theory of systems of infinitely long propositions.R. Gregory Taylor - 2002 - Bulletin of Symbolic Logic 8 (4):478-515.
    In papers published between 1930 and 1935. Zermelo outlines a foundational program, with infinitary logic at its heart, that is intended to (1) secure axiomatic set theory as a foundation for arithmetic and analysis and (2) show that all mathematical propositions are decidable. Zermelo's theory of systems of infinitely long propositions may be termed "Cantorian" in that a logical distinction between open and closed domains plays a signal role. Well-foundedness and strong inaccessibility are used to systematically integrate highly transfinite concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reflections on Skolem's relativity of set-theoretical concepts.Ignagio Jane - 2001 - Philosophia Mathematica 9 (2):129-153.
    In this paper an attempt is made to present Skolem's argument, for the relativity of some set-theoretical notions as a sensible one. Skolem's critique of set theory is seen as part of a larger argument to the effect that no conclusive evidence has been given for the existence of uncountable sets. Some replies to Skolem are discussed and are shown not to affect Skolem's position, since they all presuppose the existence of uncountable sets. The paper ends with an assessment of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Road to Modern Logic—An Interpretation.José Ferreirós - 2001 - Bulletin of Symbolic Logic 7 (4):441-484.
    This paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order-Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Early history of the Generalized Continuum Hypothesis: 1878—1938.Gregory H. Moore - 2011 - Bulletin of Symbolic Logic 17 (4):489-532.
    This paper explores how the Generalized Continuum Hypothesis (GCH) arose from Cantor's Continuum Hypothesis in the work of Peirce, Jourdain, Hausdorff, Tarski, and how GCH was used up to Gödel's relative consistency result.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • ‘Ich habe mich Wohl gehütet, alle patronen auf einmal zu verschießen’. Ernst zermelo in göttingen.Volker Peckhaus - 1990 - History and Philosophy of Logic 11 (1):19-58.
    Zermelos Zeit in Göttingen (1897?1910) kann als wissenschaftlich fruchtbarste Periode in seiner Karriere angesehen werden. Gleichwohl stehen bisher Untersuchungen aus. die eine Einbettung von Zermelos Werk in den biographischen und sozialen Kontext ermöglichen Die vorliegende Studie will diese Lücke unter Konzentration auf zwei Gegenstandsbereiche teileweise ausfüllen: (1) den historischen Entstehungskontext von Zermelos ersten Arbeiten über die Grundlagen der Mengenlehre; (2) die Vorgeschichte und näheren Umstände des 1907 an Zermelo verliehenen Lehrauftrages für mathematische Logik und verwandte Gegenstände. mit dem ein erster (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Zermelo: Boundary numbers and domains of sets continued.Heinz-Dieter Ebbinghaus - 2006 - History and Philosophy of Logic 27 (4):285-306.
    Towards the end of his 1930 paper on boundary numbers and domains of sets Zermelo briefly discusses the questions of consistency and of the existence of an unbounded sequence of strongly inaccessible cardinals, deferring a detailed discussion to a later paper which never appeared. In a report to the Emergency Community of German Science from December 1930 about investigations in progress he mentions that some of the intended extensions of these topics had been worked out and were nearly ready for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completeness and categoricity: Frege, gödel and model theory.Stephen Read - 1997 - History and Philosophy of Logic 18 (2):79-93.
    Frege’s project has been characterized as an attempt to formulate a complete system of logic adequate to characterize mathematical theories such as arithmetic and set theory. As such, it was seen to fail by Gödel’s incompleteness theorem of 1931. It is argued, however, that this is to impose a later interpretation on the word ‘complete’ it is clear from Dedekind’s writings that at least as good as interpretation of completeness is categoricity. Whereas few interesting first-order mathematical theories are categorical or (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Toward a modal-structural interpretation of set theory.Geoffrey Hellman - 1990 - Synthese 84 (3):409 - 443.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Second-order languages and mathematical practice.Stewart Shapiro - 1985 - Journal of Symbolic Logic 50 (3):714-742.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Hilbert, completeness and geometry.Giorgio Venturi - 2011 - Rivista Italiana di Filosofia Analitica Junior 2 (2):80-102.
    This paper aims to show how the mathematical content of Hilbert's Axiom of Completeness consists in an attempt to solve the more general problem of the relationship between intuition and formalization. Hilbert found the accordance between these two sides of mathematical knowledge at a logical level, clarifying the necessary and sufficient conditions for a good formalization of geometry. We will tackle the problem of what is, for Hilbert, the definition of geometry. The solution of this problem will bring out how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-Fregeanism: An Embarrassment of Riches.Alan Weir - 2003 - Notre Dame Journal of Formal Logic 44 (1):13-48.
    Neo-Fregeans argue that substantial mathematics can be derived from a priori abstraction principles, Hume's Principle connecting numerical identities with one:one correspondences being a prominent example. The embarrassment of riches objection is that there is a plurality of consistent but pairwise inconsistent abstraction principles, thus not all consistent abstractions can be true. This paper considers and criticizes various further criteria on acceptable abstractions proposed by Wright settling on another one—stability—as the best bet for neo-Fregeans. However, an analogue of the embarrassment of (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Formalization, Syntax and the Standard Model of Arithmetic.Luca Bellotti - 2007 - Synthese 154 (2):199-229.
    I make an attempt at the description of the delicate role of the standard model of arithmetic for the syntax of formal systems. I try to assess whether the possible instability in the notion of finiteness deriving from the nonstandard interpretability of arithmetic affects the very notions of syntactic metatheory and of formal system. I maintain that the crucial point of the whole question lies in the evaluation of the phenomenon of formalization. The ideas of Skolem, Zermelo, Beth and Carnap (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On How Logic Became First-Order.Matti Eklund - 1996 - Nordic Journal of Philosophical Logic 1 (2):147-67.
    Added by a category editor--not an official abstract. -/- Discusses the history (and reasons for the history) implicit in the title, as well as the author's view on same.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Discussion on the foundation of mathematics.John W. Dawson - 1984 - History and Philosophy of Logic 5 (1):111-129.
    This article provides an English translation of a historic discussion on the foundations of mathematics, during which Kurt GÖdel first announced his incompleteness theorem to the mathematical world. The text of the discussion is preceded by brief background remarks and commentary.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth vs. provability – philosophical and historical remarks.Roman Murawski - 2002 - Logic and Logical Philosophy 10:93.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Developing arithmetic in set theory without infinity: some historical remarks.Charles Parsons - 1987 - History and Philosophy of Logic 8 (2):201-213.
    In this paper some of the history of the development of arithmetic in set theory is traced, particularly with reference to the problem of avoiding the assumption of an infinite set. Although the standard method of singling out a sequence of sets to be the natural numbers goes back to Zermelo, its development was more tortuous than is generally believed. We consider the development in the light of three desiderata for a solution and argue that they can probably not all (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Historians and Philosophers of Logic: Are They Compatible? The Bolzano-Weierstrass Theorem as a Case Study.Gregory H. Moore - 1999 - History and Philosophy of Logic 20 (3-4):169-180.
    This paper combines personal reminiscences of the philosopher John Corcoran with a discussion of certain conflicts between historians of logic and philosophers of logic. Some mistaken claims about the history of the Bolzano-Weierstrass Theorem are analyzed in detail and corrected.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structures and Models of Scientific Theories: A Discussion on Quantum Non-Individuality.Décio Krause & Jonas R. B. Arenhart - unknown
    In this paper we consider the notions of structure and models within the semantic approach to theories. To highlight the role of the mathematics used to build the structures which will be taken as the models of theories, we review the notion of mathematical structure and of the models of scientific theories. Then, we analyse a case-study and argue that if a certain metaphysical view of quantum objects is adopted, namely, that which sees them as non-individuals, then there would be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Foundations for analysis and proof theory.Wilfried Sieg - 1984 - Synthese 60 (2):159 - 200.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Editor’s Introduction to Jean van Heijenoort, Historical Development of Modern Logic.Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):301-326.
    Van Heijenoort’s account of the historical development of modern logic was composed in 1974 and first published in 1992 with an introduction by his former student. What follows is a new edition with a revised and expanded introduction and additional notes.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is English consequence compact?A. C. Paseau & Owen Griffiths - 2021 - Thought: A Journal of Philosophy 10 (3):188-198.
    Thought: A Journal of Philosophy, Volume 10, Issue 3, Page 188-198, September 2021.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Issues in the foundations of science, I: Languages, structures, and models.Newton C. A. da Costa, Décio Krause & Otávio Bueno - unknown
    In this first paper of a series of works on the foundations of science, we examine the significance of logical and mathematical frameworks used in foundational studies. In particular, we emphasize the distinction between the order of a language and the order of a structure to prevent confusing models of scientific theories with first-order structures, and which are studied in standard model theory. All of us are, of course, bound to make abuses of language even in putatively precise contexts. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A New–old Characterisation of Logical Knowledge.Ivor Grattan-Guinness - 2012 - History and Philosophy of Logic 33 (3):245 - 290.
    We seek means of distinguishing logical knowledge from other kinds of knowledge, especially mathematics. The attempt is restricted to classical two-valued logic and assumes that the basic notion in logic is the proposition. First, we explain the distinction between the parts and the moments of a whole, and theories of ?sortal terms?, two theories that will feature prominently. Second, we propose that logic comprises four ?momental sectors?: the propositional and the functional calculi, the calculus of asserted propositions, and rules for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indistinguibilidade, não reflexividade, ontologia e física quântica.Jonas Rafael Becker Arenhart & Décio Krause - 2012 - Scientiae Studia 10 (1):41-69.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.
    Using hitherto unpublished manuscripts from the Zermelo Nachlass, I describe the development of the notion of definiteness and the discussion about it, giving a conclusive picture of Zermelo's thoughts up to the late thirties. As it turns out, Zermelo's considerations about definiteness are intimately related to his concept of a Cantorian universe of categorically definable sets that may be considered an inner model of set theory in an ideationally given universe of classes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Axiomatization and Models of Scientific Theories.Décio Krause, Jonas R. B. Arenhart & Fernando T. F. Moraes - 2011 - Foundations of Science 16 (4):363-382.
    In this paper we discuss two approaches to the axiomatization of scientific theories in the context of the so called semantic approach, according to which (roughly) a theory can be seen as a class of models. The two approaches are associated respectively to Suppes’ and to da Costa and Chuaqui’s works. We argue that theories can be developed both in a way more akin to the usual mathematical practice (Suppes), in an informal set theoretical environment, writing the set theoretical predicate (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Notes on the fate of logicism from principia mathematica to gödel's incompletability theorem.I. Grattan-Guinness - 1984 - History and Philosophy of Logic 5 (1):67-78.
    An outline is given of the development of logicism from the publication of the first edition of Whitehead and Russell's Principia mathematica (1910-1913) through the contributions of Wittgenstein, Ramsey and Chwistek to Russell's own modifications made for the second edition of the work (1925) and the adoption of many of its logical techniques by the Vienna Circle. A tendency towards extensionalism is emphasised.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Road to Modern Logic—An Interpretation.Jos\'E. Ferreir\'os - 2001 - Bulletin of Symbolic Logic 7 (4):441-484.
    This paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Tarski and Lesniewski on Languages with Meaning versus Languages without Use: A 60th Birthday Provocation for Jan Wolenski.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation