Switch to: Citations

Add references

You must login to add references.
  1. Compendium of the foundations of classical statistical physics.Jos Uffink - 2005 - In Jeremy Butterfield & John Earman (eds.), Handbook of the Philosophy of Physics. Elsevier.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Why equilibrium statistical mechanics works: Universality and the renormalization group.Robert W. Batterman - 1998 - Philosophy of Science 65 (2):183-208.
    Discussions of the foundations of Classical Equilibrium Statistical Mechanics (SM) typically focus on the problem of justifying the use of a certain probability measure (the microcanonical measure) to compute average values of certain functions. One would like to be able to explain why the equilibrium behavior of a wide variety of distinct systems (different sorts of molecules interacting with different potentials) can be described by the same averaging procedure. A standard approach is to appeal to ergodic theory to justify this (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The foundational role of ergodic theory.Massimiliano Badino - 2005 - Foundations of Science 11 (4):323-347.
    The foundation of statistical mechanics and the explanation of the success of its methods rest on the fact that the theoretical values of physical quantities (phase averages) may be compared with the results of experimental measurements (infinite time averages). In the 1930s, this problem, called the ergodic problem, was dealt with by ergodic theory that tried to resolve the problem by making reference above all to considerations of a dynamic nature. In the present paper, this solution will be analyzed first, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reconceptualising equilibrium in Boltzmannian statistical mechanics and characterising its existence.Charlotte Werndl & Roman Frigg - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:19-31.
    In Boltzmannian statistical mechanics macro-states supervene on micro-states. This leads to a partitioning of the state space of a system into regions of macroscopically indistinguishable micro-states. The largest of these regions is singled out as the equilibrium region of the system. What justifies this association? We review currently available answers to this question and find them wanting both for conceptual and for technical reasons. We propose a new conception of equilibrium and prove a mathematical theorem which establishes in full generality (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Rethinking boltzmannian equilibrium.Charlotte Werndl & Roman Frigg - 2015 - Philosophy of Science 82 (5):1224-1235.
    Boltzmannian statistical mechanics partitions the phase space of a sys- tem into macro-regions, and the largest of these is identified with equilibrium. What justifies this identification? Common answers focus on Boltzmann’s combinatorial argument, the Maxwell-Boltzmann distribution, and maxi- mum entropy considerations. We argue that they fail and present a new answer. We characterise equilibrium as the macrostate in which a system spends most of its time and prove a new theorem establishing that equilib- rium thus defined corresponds to the largest (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Mind the Gap: Boltzmannian versus Gibbsian Equilibrium.Charlotte Werndl & Roman Frigg - 2017 - Philosophy of Science 84 (5):1289-1302.
    There are two main theoretical frameworks in statistical mechanics, one associated with Boltzmann and the other with Gibbs. Despite their well-known differences, there is a prevailing view that equilibrium values calculated in both frameworks coincide. We show that this is wrong. There are important cases in which the Boltzmannian and Gibbsian equilibrium concepts yield different outcomes. Furthermore, the conditions under which equilibriums exists are different for Gibbsian and Boltzmannian statistical mechanics. There are, however, special circumstances under which it is true (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Justifying typicality measures of Boltzmannian statistical mechanics and dynamical systems.Charlotte Werndl - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):470-479.
    A popular view in contemporary Boltzmannian statistical mechanics is to interpret the measures as typicality measures. In measure-theoretic dynamical systems theory measures can similarly be interpreted as typicality measures. However, a justification why these measures are a good choice of typicality measures is missing, and the paper attempts to fill this gap. The paper first argues that Pitowsky's (2012) justification of typicality measures does not fit the bill. Then a first proposal of how to justify typicality measures is presented. The (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The quantitative content of statistical mechanics.David Wallace - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):285-293.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Epsilon-ergodicity and the success of equilibrium statistical mechanics.Peter B. M. Vranas - 1998 - Philosophy of Science 65 (4):688-708.
    Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt Malament and Zabell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Why Gibbs Phase Averages Work—The Role of Ergodic Theory.David B. Malament & Sandy L. Zabell - 1980 - Philosophy of Science 47 (3):339-349.
    We propose an "explanation scheme" for why the Gibbs phase average technique in classical equilibrium statistical mechanics works. Our account emphasizes the importance of the Khinchin-Lanford dispersion theorems. We suggest that ergodicity does play a role, but not the one usually assigned to it.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • On Boltzmann versus Gibbs and the Equilibrium in Statistical Mechanics.Dustin Lazarovici - 2019 - Philosophy of Science 86 (4):785-793.
    Charlotte Werndl and Roman Frigg discuss the relationship between the Boltzmannian and Gibbsian framework of statistical mechanics, addressing, in particular, the question when equilibrium values calculated in both frameworks agree. This note points out conceptual confusions that could arise from their discussion, concerning, in particular, the authors’ use of “Boltzmann equilibrium.” It also clarifies the status of the Khinchin condition for the equivalence of Boltzmannian and Gibbsian equilibrium predictions and shows that it follows, under the assumptions proposed by Werndl and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Boltzmann and Gibbs: An attempted reconciliation.D. A. Lavis - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):245-273.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Boltzmann, Gibbs, and the concept of equilibrium.David A. Lavis - 2008 - Philosophy of Science 75 (5):682-696.
    The Boltzmann and Gibbs approaches to statistical mechanics have very different definitions of equilibrium and entropy. The problems associated with this are discussed and it is suggested that they can be resolved, to produce a version of statistical mechanics incorporating both approaches, by redefining equilibrium not as a binary property but as a continuous property measured by the Boltzmann entropy and by introducing the idea of thermodynamic-like behaviour for the Boltzmann entropy. The Kac ring model is used as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Statistical Mechanics: A Tale of Two Theories.Roman Frigg & Charlotte Werndl - 2019 - The Monist 102 (4):424-438.
    There are two theoretical approaches in statistical mechanics, one associated with Boltzmann and the other with Gibbs. The theoretical apparatus of the two approaches offer distinct descriptions of the same physical system with no obvious way to translate the concepts of one formalism into those of the other. This raises the question of the status of one approach vis-à-vis the other. We answer this question by arguing that the Boltzmannian approach is a fundamental theory while Gibbsian statistical mechanics is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations