Switch to: References

Add citations

You must login to add citations.
  1. Introduction: Quantum Information Theory and Quantum Foundations.Howard Barnum, Stephanie Wehner & Alexander Wilce - 2018 - Foundations of Physics 48 (8):853-856.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum theory is not only about information.Laura Felline - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:256-265.
    In his recent book Bananaworld. Quantum mechanics for primates, Jeff Bub revives and provides a mature version of his influential information-theoretic interpretation of Quantum Theory (QT). In this paper, I test Bub’s conjecture that QT should be interpreted as a theory about information, by examining whether his information-theoretic interpretation has the resources to explain (or explain away) quantum conundrums. The discussion of Bub’s theses will also serve to investigate, more in general, whether other approaches succeed in defending the claim that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum monism: an assessment.Claudio Calosi - 2018 - Philosophical Studies 175 (12):3217-3236.
    Monism is roughly the view that there is only one fundamental entity. One of the most powerful argument in its favor comes from quantum mechanics. Extant discussions of quantum monism are framed independently of any interpretation of the quantum theory. In contrast, this paper argues that matters of interpretation play a crucial role when assessing the viability of monism in the quantum realm. I consider four different interpretations: modal interpretations, Bohmian mechanics, many worlds interpretations, and wavefunction realism. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Universality, Invariance, and the Foundations of Computational Complexity in the light of the Quantum Computer.Michael Cuffaro - 2018 - In Hansson Sven Ove (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Cham, Switzerland: Springer Verlag. pp. 253-282.
    Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding our practical limits. In this chapter I argue that the science of \emph{quantum computing} illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum jumps, superpositions, and the continuous evolution of quantum states.Rainer Dick - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:115-125.
    The apparent dichotomy between quantum jumps on the one hand, and continuous time evolution according to wave equations on the other hand, provided a challenge to Bohr’s proposal of quantum jumps in atoms. Furthermore, Schrödinger’s time-dependent equation also seemed to require a modification of the explanation for the origin of line spectra due to the apparent possibility of superpositions of energy eigenstates for different energy levels. Indeed, Schrödinger himself proposed a quantum beat mechanism for the generation of discrete line spectra (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous attempts (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Dynamic-Logical Perspective on Quantum Behavior.A. Baltag & S. Smets - 2008 - Studia Logica 89 (2):187-211.
    In this paper we show how recent concepts from Dynamic Logic, and in particular from Dynamic Epistemic logic, can be used to model and interpret quantum behavior. Our main thesis is that all the non-classical properties of quantum systems are explainable in terms of the non-classical flow of quantum information. We give a logical analysis of quantum measurements (formalized using modal operators) as triggers for quantum information flow, and we compare them with other logical operators previously used to model various (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Complete Graphical Calculus for Spekkens’ Toy Bit Theory.Miriam Backens & Ali Nabi Duman - 2016 - Foundations of Physics 46 (1):70-103.
    While quantum theory cannot be described by a local hidden variable model, it is nevertheless possible to construct such models that exhibit features commonly associated with quantum mechanics. These models are also used to explore the question of \-ontic versus \-epistemic theories for quantum mechanics. Spekkens’ toy theory is one such model. It arises from classical probabilistic mechanics via a limit on the knowledge an observer may have about the state of a system. The toy theory for the simplest possible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Theory and Determinism.Lev Vaidman - unknown
    Historically, appearance of the quantum theory led to a prevailing view that Nature is indeterministic. The arguments for the indeterminism and proposals for indeterministic and deterministic approaches are reviewed. These include collapse theories, Bohmian Mechanics and the many-worlds interpretation. It is argued that ontic interpretations of the quantum wave function provide simpler and clearer physical explanation and that the many-worlds interpretation is the most attractive since it provides a deterministic and local theory for our physical Universe explaining the illusion of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is not to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Locally Deterministic, Detector-Based Model of Quantum Measurement.Brian R. La Cour - 2014 - Foundations of Physics 44 (10):1059-1084.
    This paper describes a simple, causally deterministic model of quantum measurement based on an amplitude threshold detection scheme. Surprisingly, it is found to reproduce many phenomena normally thought to be uniquely quantum in nature. To model an \(N\) -dimensional pure state, the model uses \(N\) complex random variables given by a scaled version of the wave vector with additive complex noise. Measurements are defined by threshold crossings of the individual components, conditioned on single-component threshold crossings. The resulting detection probabilities match (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Big toy models: Representing physical systems as Chu spaces.Samson Abramsky - 2012 - Synthese 186 (3):697 - 718.
    We pursue a model-oriented rather than axiomatic approach to the foundations of Quantum Mechanics, with the idea that new models can often suggest new axioms. This approach has often been fruitful in Logic and Theoretical Computer Science. Rather than seeking to construct a simplified toy model, we aim for a 'big toy model', in which both quantum and classical systems can be faithfully represented—as well as, possibly, more exotic kinds of systems. To this end, we show how Chu spaces can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Subjective probability and quantum certainty.Carlton M. Caves, Christopher A. Fuchs & Rüdiger Schack - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):255-274.
    In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent’s degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the general claim that probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • A philosopher's view of the epistemic interpretation of quantum mechanics.Shahar Avin - unknown
    There are various reasons for favouring Ψ-epistemic interpretations of quantum mechanics over Ψ-ontic interpretations. One such reason is the correlation between quantum mechanics and Liouville dynamics. Another reason is the success of a specific epistemic model (Spekkens, 2007), in reproducing a wide range of quantum phenomena. The potential criticism, that Spekkens' restricted knowledge principle is counter-intuitive, is rejected using `everyday life' examples. It is argued that the dimensionality of spin favours Spekkens' model over Ψ-ontic models. van Enk's extension of Spekkens' (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Toy Models for Retrocausality.Huw Price - 2008 - Studies in Studies in History and Philosophy of Modern Physics 39 (4):752-761.
    A number of writers have been attracted to the idea that some of the peculiarities of quantum theory might be manifestations of 'backward' or 'retro' causality, underlying the quantum description. This idea has been explored in the literature in two main ways: firstly in a variety of explicit models of quantum systems, and secondly at a conceptual level. This note introduces a third approach, intended to complement the other two. It describes a simple toy model, which, under a natural interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Epistemology and Constructivism.Patrick Fraser, Nuriya Nurgalieva & Lídia del Rio - 2023 - Journal of Philosophical Logic 52 (6):1561-1574.
    Constructivist epistemology posits that all truths are knowable. One might ask to what extent constructivism is compatible with naturalized epistemology and knowledge obtained from inference-making using successful scientific theories. If quantum theory correctly describes the structure of the physical world, and if quantum theoretic inferences about which measurement outcomes will be observed with unit probability count as knowledge, we demonstrate that constructivism cannot be upheld. Our derivation is compatible with both intuitionistic and quantum propositional logic. This result is implied by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Supermeasured: Violating Bell-Statistical Independence Without Violating Physical Statistical Independence.Jonte R. Hance, Sabine Hossenfelder & Tim N. Palmer - 2022 - Foundations of Physics 52 (4):1-15.
    Bell’s theorem is often said to imply that quantum mechanics violates local causality, and that local causality cannot be restored with a hidden-variables theory. This however is only correct if the hidden-variables theory fulfils an assumption called Statistical Independence. Violations of Statistical Independence are commonly interpreted as correlations between the measurement settings and the hidden variables. Such correlations have been discarded as “fine-tuning” or a “conspiracy”. We here point out that the common interpretation is at best physically ambiguous and at (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Open Systems View.Michael E. Cuffaro & Stephan Hartmann - 2023
    There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their environment are conceived of as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2020 - Synthese 197 (10):4303-4318.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought to influence the metaphysics of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties.Rodolfo Gambini, Luis Pedro Garcia-Pintos & Jorge Pullin - 2018 - Physical Review A 100 (012).
    Within ordinary ---unitary--- quantum mechanics there exist global protocols that allow to verify that no definite event ---an outcome to which a probability can be associated--- occurs. Instead, states that start in a coherent superposition over possible outcomes always remain as a superposition. We show that, when taking into account fundamental errors in measuring length and time intervals, that have been put forward as a consequence of a conjunction of quantum mechanical and general relativity arguments, there are instances in which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information causality, the Tsirelson bound, and the ‘being-thus’ of things.Michael E. Cuffaro - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:266-277.
    The principle of 'information causality' can be used to derive an upper bound---known as the 'Tsirelson bound'---on the strength of quantum mechanical correlations, and has been conjectured to be a foundational principle of nature. In this paper, however, I argue that the principle has not to date been sufficiently motivated to play this role; the motivations that have so far been given are either unsatisfactorily vague or else amount to little more than an appeal to intuition. I then consider how (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2018 - Synthese:1-16.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought to influence the metaphysics of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Quantum Locality, Rings a Bell?: Bell’s Inequality Meets Local Reality and True Determinism.Natalia Sánchez-Kuntz & Eduardo Nahmad-Achar - 2018 - Foundations of Physics 48 (1):27-47.
    By assuming a deterministic evolution of quantum systems and taking realism into account, we carefully build a hidden variable theory for Quantum Mechanics based on the notion of ontological states proposed by ’t Hooft. We view these ontological states as the ones embedded with realism and compare them to the quantum states that represent superpositions, viewing the latter as mere information of the system they describe. Such a deterministic model puts forward conditions for the applicability of Bell’s inequality: the usual (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Decompositional Equivalence: A Fundamental Symmetry Underlying Quantum Theory.Chris Fields - 2016 - Axiomathes 26 (3):279-311.
    Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using a simple thought experiment, that quantum theory follows from decompositional equivalence together with Landauer’s principle. This demonstration raises within physics a question previously left to psychology: how do human—or any—observers identify or agree about what constitutes a “system of interest”?
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Orthodox Quantum Mechanics?David Wallace - 2019 - In Alberto Cordero (ed.), Philosophers Look at Quantum Mechanics. Springer Verlag.
    What is called ``orthodox'' quantum mechanics, as presented in standard foundational discussions, relies on two substantive assumptions --- the projection postulate and the eigenvalue-eigenvector link --- that do not in fact play any part in practical applications of quantum mechanics. I argue for this conclusion on a number of grounds, but primarily on the grounds that the projection postulate fails correctly to account for repeated, continuous and unsharp measurements and that the eigenvalue-eigenvector link implies that virtually all interesting properties are (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • All is Psi.Lev Vaidman - unknown
    It is argued that standard quantum theory without collapse provides a satisfactory explanation of everything we experience in this and in numerous parallel worlds. The only fundamental ontology is the universal wave function evolving in a deterministic way without action at a distance.
    Download  
     
    Export citation  
     
    Bookmark  
  • QBism, the Perimeter of Quantum Bayesianism.Christopher A. Fuchs - 2010
    This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian probability theory, is crucially dependent upon the tools of quantum information theory, and most recently, has set out to investigate whether the physical world might be of a type sketched by some false-started philosophies of 100 years ago (pragmatism, pluralism, nonreductionism, and meliorism). Beyond conceptual issues, work at Perimeter Institute is focused on (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)Inferential vs. Dynamical Conceptions of Physics.David Wallace - unknown
    I contrast two possible attitudes towards a given branch of physics: as inferential, and as dynamical. I contrast these attitudes in classical statistical mechanics, in quantum mechanics, and in quantum statistical mechanics; in this last case, I argue that the quantum-mechanical and statistical-mechanical aspects of the question become inseparable. Along the way various foundational issues in statistical and quantum physics are illuminated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How to spell out the epistemic conception of quantum states.Simon Friederich - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):149-157.
    The paper investigates the epistemic conception of quantum states---the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and relativity theory arises. Here it is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Arrangements.Gregg Jaeger & Anton Zeilinger - 2021 - Cham, Switzerland: Springer Nature.
    This book presents a collection of novel contributions and reviews by renowned researchers in the foundations of quantum physics, quantum optics, and neutron physics. It is published in honor of Michael Horne, whose exceptionally clear and groundbreaking work in the foundations of quantum mechanics and interferometry, both of photons and of neutrons, has provided penetrating insight into the implications of modern physics for our understanding of the physical world. He is perhaps best known for the Clauser-Horne-Shimony-Holt (CHSH) inequality. This collection (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • QBism and the limits of scientific realism.David Glick - 2021 - European Journal for Philosophy of Science 11 (2):1-19.
    QBism is an agent-centered interpretation of quantum theory. It rejects the notion that quantum theory provides a God’s eye description of reality and claims instead that it imposes constraints on agents’ subjective degrees of belief. QBism’s emphasis on subjective belief has led critics to dismiss it as antirealism or instrumentalism, or even, idealism or solipsism. The aim of this paper is to consider the relation of QBism to scientific realism. I argue that while QBism is an unhappy fit with a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Interpreting the quantum mechanics of cosmology.David Wallace - forthcoming - In A. Ijjas & B. Loewer (eds.), Philosophy of Cosmology: an Introduction. Oxford University Press.
    Quantum theory plays an increasingly significant role in contemporary early-universe cosmology, most notably in the inflationary origins of the fluctuation spectrum of the microwave background radiation. I consider the two main strategies for interpreting standard quantum mechanics in the light of cosmology. I argue that the conceptual difficulties of the approaches based around an irreducible role for measurement - already very severe - become intolerable in a cosmological context, whereas the approach based around Everett's original idea of treating quantum systems (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Interpreting Heisenberg interpreting quantum states.Simon Friederich - 2012 - Philosophia Naturalis 50 (1):85-114.
    The paper investigates possible readings of the later Heisenberg's remarks on the nature of quantum states. It discusses, in particular, whether Heisenberg should be seen as a proponent of the epistemic conception of states – the view that quantum states are not descriptions of quantum systems but rather reflect the state assigning observers' epistemic relations to these systems. On the one hand, it seems plausible that Heisenberg subscribes to that view, given how he defends the notorious "collapse of the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • ”The Unavoidable Interaction Between the Object and the Measuring Instruments”: Reality, Probability, and Nonlocality in Quantum Physics.Arkady Plotnitsky - 2020 - Foundations of Physics 50 (12):1824-1858.
    This article aims to contribute to the ongoing task of clarifying the relationships between reality, probability, and nonlocality in quantum physics. It is in part stimulated by Khrennikov’s argument, in several communications, for “eliminating the issue of quantum nonlocality” from the analysis of quantum entanglement. I argue, however, that the question may not be that of eliminating but instead that of further illuminating this issue, a task that can be pursued by relating quantum nonlocality to other key features of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Understanding quantum phenomena and quantum theories.Armond Duwell - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:278-291.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemic theories of objective chance.Richard Johns - 2020 - Synthese 197 (2):703-730.
    Epistemic theories of objective chance hold that chances are idealised epistemic probabilities of some sort. After giving a brief history of this approach to objective chance, I argue for a particular version of this view, that the chance of an event E is its epistemic probability, given maximal knowledge of the possible causes of E. The main argument for this view is the demonstration that it entails all of the commonly-accepted properties of chance. For example, this analysis entails that chances (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Primacy of Quantum Logic in the Natural World.Cynthia Sue Larson - 2015 - Cosmos and History 11 (2):326-340.
    72 1024x768 This paper presents evidence from the fields of cognitive science and quantum information theory suggesting quantum theory to be the dominant fundamental logic in the natural world, in direct challenge to the long-held assumption that quantum logic only need be considered ‘in the quantum realm.' A summary of the evolution of quantum logic and quantum theory is presented, along with an overview for the necessity of incomplete quantum knowledge, and some representative aspects of quantum logic. A case can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Bit Commitment and the Reality of the Quantum State.R. Srikanth - 2018 - Foundations of Physics 48 (1):92-109.
    Quantum bit commitment is insecure in the standard non-relativistic quantum cryptographic framework, essentially because Alice can exploit quantum steering to defer making her commitment. Two assumptions in this framework are that: Alice knows the ensembles of evidence E corresponding to either commitment; and system E is quantum rather than classical. Here, we show how relaxing assumption or can render her malicious steering operation indeterminable or inexistent, respectively. Finally, we present a secure protocol that relaxes both assumptions in a quantum teleportation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Necessity of Entanglement for the Explanation of Quantum Speedup.Michael Cuffaro - manuscript
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An argument for ψ-ontology in terms of protective measurements.Shan Gao - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):198-202.
    The ontological model framework provides a rigorous approach to address the question of whether the quantum state is ontic or epistemic. When considering only conventional projective measurements, auxiliary assumptions are always needed to prove the reality of the quantum state in the framework. For example, the Pusey-Barrett-Rudolph theorem is based on an additional preparation independence assumption. In this paper, we give a new proof of psi-ontology in terms of protective measurements in the ontological model framework. The proof does not rely (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)On classical cloning and no-cloning.Nicholas J. Teh - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):47-63.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Probability in Physics: Stochastic, Statistical, Quantum.David Wallace - 2014 - In Alastair Wilson (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press.
    I review the role of probability in contemporary physics and the origin of probabilistic time asymmetry, beginning with the pre-quantum case but concentrating on quantum theory. I argue that quantum mechanics radically changes the pre-quantum situation and that the philosophical nature of objective probability in physics, and of probabilistic asymmetry in time, is dependent on the correct resolution of the quantum measurement problem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Retrocausality at no extra cost.Peter William Evans - 2015 - Synthese 192 (4):1139-1155.
    One obstacle faced by proposals of retrocausal influences in quantum mechanics is the perceived high conceptual cost of making such a proposal. I assemble here a metaphysical picture consistent with the possibility of retrocausality and not precluded by the known physical structure of our reality. This picture employs two relatively well-established positions—the block universe model of time and the interventionist account of causation—and requires the dismantling of our ordinary asymmetric causal intuition and our ordinary intuition about epistemic access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Contextuality, Fine-Tuning and Teleological Explanation.Emily Adlam - 2021 - Foundations of Physics 51 (6):1-40.
    I assess various proposals for the source of the intuition that there is something problematic about contextuality, ultimately concluding that contextuality is best thought of in terms of fine-tuning. I then argue that as with other fine-tuning problems in quantum mechanics, this behaviour can be understood as a manifestation of teleological features of physics. Finally I discuss several formal mathematical frameworks that have been used to analyse contextuality and consider how their results should be interpreted by scientific realists. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Oracles and Query Lower Bounds in Generalised Probabilistic Theories.Howard Barnum, Ciarán M. Lee & John H. Selby - 2018 - Foundations of Physics 48 (8):954-981.
    We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality, purification, strong symmetry, and informationally consistent composition. Sorkin has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information, immaterialism, instrumentalism: Old and new in quantum information.Christopher G. Timpson - 2010 - In Alisa Bokulich & Gregg Jaeger (eds.), Philosophy of quantum information and entanglement. New York: Cambridge University Press. pp. 208--227.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Novel Interpretation of the Klein-Gordon Equation.K. B. Wharton - 2010 - Foundations of Physics 40 (3):313-332.
    The covariant Klein-Gordon equation requires twice the boundary conditions of the Schrödinger equation and does not have an accepted single-particle interpretation. Instead of interpreting its solution as a probability wave determined by an initial boundary condition, this paper considers the possibility that the solutions are determined by both an initial and a final boundary condition. By constructing an invariant joint probability distribution from the size of the solution space, it is shown that the usual measurement probabilities can nearly be recovered (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations