Switch to: Citations

Add references

You must login to add references.
  1. Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • From Bi-facial Truth to Bi-facial Proofs.Stefan Wintein & Reinhard A. Muskens - 2015 - Studia Logica 103 (3):545-558.
    In their recent paper Bi-facial truth: a case for generalized truth values Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation of classical truth values. By taking the Cartesian product of the two disjoint sets of values thus obtained, they arrive at four generalized truth values and consider two “semi-classical negations” on them. The resulting semantics is used to define three novel logics which are closely related to Belnap’s well-known four valued logic. A syntactic characterization of these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Logic of Generalized Truth Values and the Logic of Bilattices.Sergei P. Odintsov & Heinrich Wansing - 2015 - Studia Logica 103 (1):91-112.
    This paper sheds light on the relationship between the logic of generalized truth values and the logic of bilattices. It suggests a definite solution to the problem of axiomatizing the truth and falsity consequence relations, \ and \ , considered in a language without implication and determined via the truth and falsity orderings on the trilattice SIXTEEN 3 . The solution is based on the fact that a certain algebra isomorphic to SIXTEEN 3 generates the variety of commutative and distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • How a computer should think.Nuel Belnap - 1977 - In Gilbert Ryle (ed.), Contemporary aspects of philosophy. Boston: Oriel Press.
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • Elimination of Cuts in First-order Finite-valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)On Axiomatizing Shramko-Wansing’s Logic.Sergei P. Odintsov - 2009 - Studia Logica 91 (3):407-428.
    This work treats the problem of axiomatizing the truth and falsity consequence relations, ⊨ t and ⊨ f, determined via truth and falsity orderings on the trilattice SIXTEEN 3 (Shramko and Wansing, 2005). The approach is based on a representation of SIXTEEN 3 as a twist-structure over the two-element Boolean algebra.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Representation of interlaced trilattices.Umberto Rivieccio - 2013 - Journal of Applied Logic 11 (2):174-189.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A calculus for Belnap's logic in which each proof consists of two trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a natural dual (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Power of Belnap: Sequent Systems for SIXTEEN ₃. [REVIEW]Heinrich Wansing - 2010 - Journal of Philosophical Logic 39 (4):369 - 393.
    The trilattice SIXTEEN₃ is a natural generalization of the wellknown bilattice FOUR₂. Cut-free, sound and complete sequent calculi for truth entailment and falsity entailment in SIXTEEN₃, are presented.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Partial and Paraconsistent Logics.Reinhard Muskens - 1999 - Notre Dame Journal of Formal Logic 40 (3):352-374.
    In this paper we consider the theory of predicate logics in which the principle of Bivalence or the principle of Non-Contradiction or both fail. Such logics are partial or paraconsistent or both. We consider sequent calculi for these logics and prove Model Existence. For L4, the most general logic under consideration, we also prove a version of the Craig-Lyndon Interpolation Theorem. The paper shows that many techniques used for classical predicate logic generalise to partial and paraconsistent logics once the right (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Meaning and Partiality.Reinhard Muskens - 1995 - Stanford, CA: CSLI Publications.
    This book radically simplifies Montague Semantics and generalizes the theory by basing it on a partial higher order logic. The resulting theory is a synthesis of Montague Semantics and Situation Semantics. In the late sixties Richard Montague developed the revolutionary idea that we can understand the concept of meaning in ordinary languages much in the same way as we understand the semantics of logical languages. Unfortunately, however, he formalized his idea in an unnecessarily complex way - two outstanding researchers in (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (2 other versions)Methoden zur Axiomatisierung beliebiger Aussagen- und Prädikatenkalküle.Karl Schröter - 1955 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 1 (4):241-251.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)On Axiomatizing Shramko-Wansing’s Logic.Sergei P. Odintsov - 2009 - Studia Logica 91 (3):407 - 428.
    This work treats the problem of axiomatizing the truth and falsity consequence relations, $ \vDash _t $ and $ \vDash _f $, determined via truth and falsity orderings on the trilattice SIXTEEN₃. The approach is based on a representation of SIXTEEN₃ as a twist-structure over the two-element Boolean algebra.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (2 other versions)Methoden zur Axiomatisierung beliebiger Aussagen‐ und Prädikatenkalküle.Karl Schröter - 1955 - Mathematical Logic Quarterly 1 (4):241-251.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Some Useful 16-Valued Logics: How a Computer Network Should Think.Yaroslav Shramko & Heinrich Wansing - 2005 - Journal of Philosophical Logic 34 (2):121-153.
    In Belnap's useful 4-valued logic, the set 2 = {T, F} of classical truth values is generalized to the set 4 = ������(2) = {Ø, {T}, {F}, {T, F}}. In the present paper, we argue in favor of extending this process to the set 16 = ᵍ (4) (and beyond). It turns out that this generalization is well-motivated and leads from the bilattice FOUR₂ with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN₃ with an (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • A Non-Inferentialist, Anti-Realistic Conception of Logical Truth and Falsity.Heinrich Wansing - 2012 - Topoi 31 (1):93-100.
    Anti-realistic conceptions of truth and falsity are usually epistemic or inferentialist. Truth is regarded as knowability, or provability, or warranted assertability, and the falsity of a statement or formula is identified with the truth of its negation. In this paper, a non-inferentialist but nevertheless anti-realistic conception of logical truth and falsity is developed. According to this conception, a formula (or a declarative sentence) A is logically true if and only if no matter what is told about what is told about (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A useful four-valued logic.N. D. Belnap - 1977 - In J. M. Dunn & G. Epstein (eds.), Modern Uses of Multiple-Valued Logic. D. Reidel.
    Download  
     
    Export citation  
     
    Bookmark   261 citations  
  • (1 other version)Meaning and Partiality.Reinhard Muskens - 1989 - Dissertation, University of Amsterdam
    Download  
     
    Export citation  
     
    Bookmark   49 citations