Switch to: Citations

Add references

You must login to add references.
  1. Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On Pairs of Dual Consequence Operations.Urszula Wybraniec-Skardowska & Jacek Waldmajer - 2011 - Logica Universalis 5 (2):177-203.
    In the paper, the authors discuss two kinds of consequence operations characterized axiomatically. The first one are consequence operations of the type Cn + that, in the intuitive sense, are infallible operations, always leading from accepted (true) sentences of a deductive system to accepted (true) sentences of the deductive system (see Tarski in Monatshefte für Mathematik und Physik 37:361–404, 1930, Comptes Rendus des Séances De la Société des Sciences et des Lettres de Varsovie 23:22–29, 1930; Pogorzelski and Słupecki in Stud (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logical Extensions of Aristotle’s Square.Dominique Luzeaux, Jean Sallantin & Christopher Dartnell - 2008 - Logica Universalis 2 (1):167-187.
    . We start from the geometrical-logical extension of Aristotle’s square in [6,15] and [14], and study them from both syntactic and semantic points of view. Recall that Aristotle’s square under its modal form has the following four vertices: A is □α, E is , I is and O is , where α is a logical formula and □ is a modality which can be defined axiomatically within a particular logic known as S5 (classical or intuitionistic, depending on whether is involutive (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Sur la structuration du tableau Des connectifs interpropositionnels binaires.Robert Blanché - 1957 - Journal of Symbolic Logic 22 (1):17-18.
    La théorie de la quaternalité, telle que Piaget et Gottschalk l'ont appliquée aux connectifs binaires du calcul bivalent, appelle quelques précisions et compléments.Les seize connectifs ne comportent que deux quaternes complets: celui des jonctions et celui des implications. Leurs similitudes formelles ne doivent pas dissimuler une différence dans leur mode de construction. Elle apparaît sur leurs diagrammes (inspirés du “carré logique” traditionnel) par la place de la cellule initiale et par celles des signes barrés du trait vertical de la négation:En (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Foundations for the formalization of metamathematics and axiomatizations of consequence theories.Urszula Wybraniec-Skardowska - 2004 - Annals of Pure and Applied Logic 127 (1-3):243-266.
    This paper deals with Tarski's first axiomatic presentations of the syntax of deductive system. Andrzej Grzegorczyk's significant results which laid the foundations for the formalization of metalogic, are touched upon briefly. The results relate to Tarski's theory of concatenation, also called the theory of strings, and to Tarski's ideas on the formalization of metamathematics. There is a short mention of author's research in the field. The main part of the paper surveys research on the theory of deductive systems initiated by (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Remarques sur la Théorie de L'Hexagone logique de Blanché.Pierre Sauriol - 1968 - Dialogue 7 (3):374-390.
    En cet article nous montrons en premier lieu que la théorie de l'hexagone logique de Blanché n'est pas, comme il le pense, le résultat d'une réflexion philosophique, mais qu'elle relève véritablement de la logique scientifique, puisqu'elle s'insère tout naturellement dans la structure d'ensemble des liaisons uninaires de la logique trivalente des propositions. Cette démonstration nous conduit, en second lieu, à renverser le jugement défavorable que E. J. Lemmon avait porté sur la toute première ébauche de cette théorie, et ainsi à (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the 3d visualisation of logical relations.Hans Smessaert - 2009 - Logica Universalis 3 (2):303-332.
    The central aim of this paper is to present a Boolean algebraic approach to the classical Aristotelian Relations of Opposition, namely Contradiction and (Sub)contrariety, and to provide a 3D visualisation of those relations based on the geometrical properties of Platonic and Archimedean solids. In the first part we start from the standard Generalized Quantifier analysis of expressions for comparative quantification to build the Comparative Quantifier Algebra CQA. The underlying scalar structure allows us to define the Aristotelian relations in Boolean terms (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)The theory of quaternality.W. H. Gottschalk - 1953 - Journal of Symbolic Logic 18 (3):193-196.
    Download  
     
    Export citation  
     
    Bookmark   17 citations