Switch to: Citations

Add references

You must login to add references.
  1. Soundness and completeness of the Cirquent calculus system CL6 for computability logic.Wenyan Xu & Sanyang Liu - 2012 - Logic Journal of the IGPL 20 (1):317-330.
    Computability logic is a formal theory of computability. The earlier article ‘Introduction to cirquent calculus and abstract resource semantics’ by Japaridze proved soundness and completeness for the basic fragment CL5 of computability logic. The present article extends that result to the more expressive cirquent calculus system CL6, which is a conservative extension of both CL5 and classical propositional logic.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Separating the basic logics of the basic recurrences.Giorgi Japaridze - 2012 - Annals of Pure and Applied Logic 163 (3):377-389.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The taming of recurrences in computability logic through cirquent calculus, Part II.Giorgi Japaridze - 2013 - Archive for Mathematical Logic 52 (1-2):213-259.
    This paper constructs a cirquent calculus system and proves its soundness and completeness with respect to the semantics of computability logic. The logical vocabulary of the system consists of negation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\neg}}$$\end{document}, parallel conjunction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\wedge}}$$\end{document}, parallel disjunction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\vee}}$$\end{document}, branching recurrence ⫰, and branching corecurrence ⫯. The article is published in two parts, with (the previous) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The taming of recurrences in computability logic through cirquent calculus, Part I.Giorgi Japaridze - 2013 - Archive for Mathematical Logic 52 (1-2):173-212.
    This paper constructs a cirquent calculus system and proves its soundness and completeness with respect to the semantics of computability logic. The logical vocabulary of the system consists of negation ${\neg}$ , parallel conjunction ${\wedge}$ , parallel disjunction ${\vee}$ , branching recurrence ⫰, and branching corecurrence ⫯. The article is published in two parts, with (the present) Part I containing preliminaries and a soundness proof, and (the forthcoming) Part II containing a completeness proof.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In the Beginning was Game Semantics?Giorgi Japaridze - 2009 - In Ondrej Majer, Ahti-Veikko Pietarinen & Tero Tulenheimo (eds.), Games: Unifying Logic, Language, and Philosophy. Dordrecht, Netherland: Springer Verlag. pp. 249--350.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Introduction to computability logic.Giorgi Japaridze - 2003 - Annals of Pure and Applied Logic 123 (1-3):1-99.
    This work is an attempt to lay foundations for a theory of interactive computation and bring logic and theory of computing closer together. It semantically introduces a logic of computability and sets a program for studying various aspects of that logic. The intuitive notion of computational problems is formalized as a certain new, procedural-rule-free sort of games between the machine and the environment, and computability is understood as existence of an interactive Turing machine that wins the game against any possible (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Many Concepts and Two Logics of Algorithmic Reduction.Giorgi Japaridze - 2009 - Studia Logica 91 (1):1-24.
    Within the program of finding axiomatizations for various parts of computability logic, it was proven earlier that the logic of interactive Turing reduction is exactly the implicative fragment of Heyting’s intuitionistic calculus. That sort of reduction permits unlimited reusage of the computational resource represented by the antecedent. An at least equally basic and natural sort of algorithmic reduction, however, is the one that does not allow such reusage. The present article shows that turning the logic of the first sort of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Logic of Interactive Turing Reduction.Giorgi Japaridze - 2007 - Journal of Symbolic Logic 72 (1):243 - 276.
    The paper gives a soundness and completeness proof for the implicative fragment of intuitionistic calculus with respect to the semantics of computability logic, which understands intuitionistic implication as interactive algorithmic reduction. This concept — more precisely, the associated concept of reducibility — is a generalization of Turing reducibility from the traditional, input/output sorts of problems to computational tasks of arbitrary degrees of interactivity.
    Download  
     
    Export citation  
     
    Bookmark   9 citations