Switch to: Citations

Add references

You must login to add references.
  1. Hypersequents and the proof theory of intuitionistic fuzzy logic.Matthias Baaz & Richard Zach - 2000 - In Clote Peter G. & Schwichtenberg Helmut (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Completeness of a first-order temporal logic with time-gaps.Matthias Baaz, Alexander Leitsch & Richard Zach - 1996 - Theoretical Computer Science 160 (1-2):241-270.
    The first-order temporal logics with □ and ○ of time structures isomorphic to ω (discrete linear time) and trees of ω-segments (linear time with branching gaps) and some of its fragments are compared: the first is not recursively axiomatizable. For the second, a cut-free complete sequent calculus is given, and from this, a resolution system is derived by the method of Maslov.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Compact propositional Gödel logics.Matthias Baaz & Richard Zach - 1998 - In Baaz Matthias (ed.), 28th IEEE International Symposium on Multiple-Valued Logic, 1998. Proceedings. IEEE Press. pp. 108-113.
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantified Propositional Gödel Logics.Matthias Baaz, Agata Ciabattoni & Richard Zach - 2000 - In Voronkov Andrei & Parigot Michel (eds.), Logic for Programming and Automated Reasoning. 7th International Conference, LPAR 2000. Springer. pp. 240-256.
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logic with truth values in a linearly ordered Heyting algebra.Alfred Horn - 1969 - Journal of Symbolic Logic 34 (3):395-408.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Zum intuitionistischen aussagenkalkül.K. Gödel - 1932 - Anzeiger der Akademie der Wissenschaften in Wien 69:65--66.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Linear Orderings.Joseph G. Rosenstein - 1983 - Journal of Symbolic Logic 48 (4):1207-1209.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Intuitionistic fuzzy logic and intuitionistic fuzzy set theory.Gaisi Takeuti & Satoko Titani - 1984 - Journal of Symbolic Logic 49 (3):851-866.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A propositional calculus with denumerable matrix.Michael Dummett - 1959 - Journal of Symbolic Logic 24 (2):97-106.
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.
    Download  
     
    Export citation  
     
    Bookmark   161 citations  
  • Book Reviews. [REVIEW]P. Hájek - 2002 - Studia Logica 72 (3):433-443.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • A Non-arithmetical Gödel Logic.Peter Hájek - 2005 - Logic Journal of the IGPL 13 (4):435-441.
    The logic in question is G↓ – Gödel predicate logic with the set of truth values being V↓ = {1/n | n = 1, 2, …} ∪ {0}. It is shown in [1] that the set of its tautologies is not recursively axiomatizable . We show that this set is even non-arithmetical and we prove the set of satisfiable formulas of G↓ to be non-arithmetical. In the last section we show that another important Gödel logic G↑ is arithmetical, more precisely, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Intuitionistic Logic.Dirk van Dalen - 2002 - In D. M. Gabbay & F. Guenthner (eds.), ¸ Itegabbay2002. Kluwer Academic Publishers. pp. 1-115.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • A proof-theoretical investigation of global intuitionistic (fuzzy) logic.Agata Ciabattoni - 2005 - Archive for Mathematical Logic 44 (4):435-457.
    We perform a proof-theoretical investigation of two modal predicate logics: global intuitionistic logic GI and global intuitionistic fuzzy logic GIF. These logics were introduced by Takeuti and Titani to formulate an intuitionistic set theory and an intuitionistic fuzzy set theory together with their metatheories. Here we define analytic Gentzen style calculi for GI and GIF. Among other things, these calculi allows one to prove Herbrand’s theorem for suitable fragments of GI and GIF.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Linear Kripke Frames and Gödel Logics.Arnold Beckmann & Norbert Preining - 2007 - Journal of Symbolic Logic 72 (1):26 - 44.
    We investigate the relation between intermediate predicate logics based on countable linear Kripke frames with constant domains and Gödel logics. We show that for any such Kripke frame there is a Gödel logic which coincides with the logic defined by this Kripke frame on constant domains and vice versa. This allows us to transfer several recent results on Gödel logics to logics based on countable linear Kripke frames with constant domains: We obtain a complete characterisation of axiomatisability of logics based (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Die nichtaxiomatisierbarkeit Des unendlichwertigen prädikatenkalküls Von łukasiewicz.Bruno Scarpellini - 1962 - Journal of Symbolic Logic 27 (2):159-170.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (2 other versions)Descriptive Set Theory.Richard Mansfield - 1981 - Journal of Symbolic Logic 46 (4):874-876.
    Download  
     
    Export citation  
     
    Bookmark   55 citations