Résumé – Nous nous intéressons à l’enseignement et l’apprentissage de l’infini en classe de mathématiques en considérant les différences et les relations entre infini potentiel et infini actuel. Nous présentons les principaux éléments de notre étude philosophique, épistémologique et didactique, ainsi que trois situations visant à conduire un travail explicite avec les élèves sur ces questions en début de lycée. ---------------------------------------------------------------------------------------------------- --------------------------------- Abstract – We are interested in the teaching and learning of infinite in mathematics class, taking into account the relations (...) between potential infinite and actual infinite. We report the main elements of our current philosophical, epistemological and didactical study; we also present three mathematical situations that we consider relevant for this purpose and to be explored with 10 and 11 grade students. (shrink)
The Mathematical Imagination focuses on the role of mathematics and digital technologies in critical theory of culture. This book belongs to the history of ideas rather than to that of mathematics proper since it treats it on a metaphorical level to express phenomena of silence or discontinuity. In order to bring more readability and clarity to the non-specialist readers, I firstly present the essential concepts, background, and objectives of his book...
This article analyzes the value of geometric models to understand matter with the examples of the Platonic model for the primary four elements (fire, air, water, and earth) and the models of carbon atomic structures in the new science of crystallography. How the geometry of these models is built in order to discover the properties of matter is explained: movement and stability for the primary elements, and hardness, softness and elasticity for the carbon atoms. These geometric models appear to have (...) a double quality: firstly, they exhibit visually the scientific properties of matter, and secondly they give us the possibility to visualize its whole nature. Geometrical models appear to be the expression of the mind in the understanding of physical matter. (shrink)
Descartes développe, dans ses Principes de la Philosophie, les principes fondateurs de son système construit sur l’identification de la matière à l’espace. L’analyse de ses principes nous invite à repenser le rôle de la métaphysique dans la constitution de la science et permet aussi de comprendre comment les concepts de matière, substance, espace, étendue géométrique, mouvement, infini et vide sont devenus les questions centrales de la science du XVIIe siècle.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.