Results for 'Malware'

15 found
Order:
  1.  4
    Intelligent Malware Detection Empowered by Deep Learning for Cybersecurity Enhancement.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):625-635.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid (...) datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve response times, reducing the risk of potential damage. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  4
    Revolutionizing Cybersecurity: Intelligent Malware Detection Through Deep Neural Networks.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-666.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid (...) datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve response times, reducing the risk of potential damage. The study also incorporates visualization tools to provide interpretable insights into model decisions, enhancing transparency for cybersecurity practitioners. Concluding with a discussion on the challenges and future prospects, this research paves the way for scalable, AI-driven solutions to combat evolving cyber threats. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  46
    Exploiting the In-Distribution Embedding Space with Deep Learning and Bayesian inference for Detection and Classification of an Out-of-Distribution Malware (Extended Abstract).Tosin ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Aaai Conferenece Proceeding.
    Current state-of-the-art out-of-distribution algorithm does not address the variation in dynamic and static behavior between malware variants from the same family as evidence in their poor performance against an out-of-distribution malware attack. We aims to address this limitation by: 1) exploitation of the in-dimensional embedding space between variants from the same malware family to account for all variations 2) exploitation of the inter-dimensional space between different malware family 3) building a deep learning-based model with a shallow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  18
    Impact of Variation in Vector Space on the performance of Machine and Deep Learning Models on an Out-of-Distribution malware attack Detection.Tosin Ige - forthcoming - Ieee Conference Proceeding.
    Several state-of-the-art machine and deep learning models in the mode of adversarial training, input transformation, self adaptive training, adversarial purification, zero-shot, one- shot, and few-shot meta learning had been proposed as a possible solution to an out-of-distribution problems by applying them to wide arrays of benchmark dataset across different research domains with varying degrees of performances, but investigating their performance on previously unseen out-of- distribution malware attack remains elusive. Having evaluated the poor performances of these state-of-the-art approaches in our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  41
    Exploiting the In-Distribution Embedding Space with Deep Learning and Bayesian inference for Detection and Classification of an Out-of-Distribution Malware (Extended Abstract).Tosin Ige - forthcoming - Aaai Conference.
    Current state-of-the-art out-of-distribution algorithm does not address the variation in dynamic and static behavior between malware variants from the same family as evidence in their poor performance against an out-of-distribution malware attack. We aims to address this limitation by: 1) exploitation of the in-dimensional embedding space between variants from the same malware family to account for all variations 2) exploitation of the inter-dimensional space between different malware family 3) building a deep learning-based model with a shallow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  5
    Empowering Cybersecurity with Intelligent Malware Detection Using Deep Learning Techniques.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-665.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid (...) datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve response times, reducing the risk of potential damage. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  4
    A Novel Deep Learning-Based Framework for Intelligent Malware Detection in Cybersecurity.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):666-669.
    With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid (...) datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve response times, reducing the risk of potential damage. The study also incorporates visualization tools to provide interpretable insights into model decisions, enhancing transparency for cybersecurity practitioners. Concluding with a discussion on the challenges and future prospects, this research paves the way for scalable, AI-driven solutions to combat evolving cyber threats. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  5
    Advanced Deep Learning Models for Proactive Malware Detection in Cybersecurity Systems.A. Manoj Prabharan - 2023 - Journal of Science Technology and Research (JSTAR) 5 (1):666-676.
    By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Handles for Pentesting Modern Secure Coding: bypassing mobile security.Mourad M. H. Henchiri - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (4):8-15.
    Abstract— Malware behavior was and still is a key solution, for top security appliances, to monitor algorithmic approaches when performing regular security tasks; scan, detection, cleaning and removal. And even for early actions; when building a security framework and securing all possible access points to all data sources. The first suspect in such scenario is the inner residents; appliances and system functions. Numerous are available at each operating system, and thus, the security is raised and set up frequently with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Attack Prevention in IoT through Hybrid Optimization Mechanism and Deep Learning Framework.Regonda Nagaraju, Jupeth Pentang, Shokhjakhon Abdufattokhov, Ricardo Fernando CosioBorda, N. Mageswari & G. Uganya - 2022 - Measurement: Sensors 24:100431.
    The Internet of Things (IoT) connects schemes, programs, data management, and operations, and as they continuously assist in the corporation, they may be a fresh entryway for cyber-attacks. Presently, illegal downloading and virus attacks pose significant threats to IoT security. These risks may acquire confidential material, causing reputational and financial harm. In this paper hybrid optimization mechanism and deep learning,a frame is used to detect the attack prevention in IoT. To develop a cybersecurity warning system in a huge data set, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. The unsustainable fragility of the digital, and what to do about it.Luciano Floridi - 2017 - Philosophy and Technology 30 (3):259-261.
    2017 saw the occurrence of two major IT disasters: the meltdown that plunged into chaos British Airways’ flights at Heathrow and Gatwick airports, and the WannaCry malware hit on Microsoft Windows systems. Incidents like these exemplify how fragile the digital is and how systemic the problems caused by digital failures can be. This paper explores some possible solutions to ensure that any damage caused by such failures is limited. These include redundancy, reflexivity and insurance, accountability, and collaboration.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Invasion of the Mind Snatchers. On memes and cultural parasites.Maarten Boudry - unknown
    In this commentary on Daniel Dennett's 'From Bacteria to Bach and Back', I make some suggestions to strengthen the meme concept, in particular the hypothesis of cultural parasitism. This is a notion that has both caused excitement among enthusiasts and raised the hackles of critics. Is the “meme” meme itself an annoying piece of malware, which has infected and corrupted the mind of an otherwise serious philosopher? Or is it an indispensable theoretical tool, as Dennett believes, which deserves to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Analysis of Cyber Security In E-Governance Utilizing Blockchain Performance.Regonda Nagaraju, Selvanayaki Shanmugam, Sivaram Rajeyyagari, Jupeth Pentang, B. Kiran Bala, Arjun Subburaj & M. Z. M. Nomani - manuscript
    E-Government refers to the administration of Information and Communication Technologies (ICT) to the procedures and functions of the government with the objective of enhancing the transparency, efficiency and participation of the citizens. E-Government is tough systems that require distribution, protection of privacy and security and collapse of these could result in social and economic costs on a large scale. Many of the available e-government systems like electronic identity system of management (eIDs), websites are established at duplicated databases and servers. An (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  4
    An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey. [REVIEW]Tosin Ige - manuscript
    Phishing is one of the most effective ways in which cybercriminals get sensitive details such as credentials for online banking, digital wallets, state secrets, and many more from potential victims. They do this by spamming users with malicious URLs with the sole purpose of tricking them into divulging sensitive information which is later used for various cybercrimes. In this research, we did a comprehensive review of current state-of-the-art machine learning and deep learning phishing detection techniques to expose their vulnerabilities and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey. [REVIEW]Tosin Ige, Christopher Kiekintveld & Aritran Piplai - forthcoming - Proceedings of the IEEE:11.
    To secure computers and information systems from attackers taking advantage of vulnerabilities in the system to commit cybercrime, several methods have been proposed for real-time detection of vulnerabilities to improve security around information systems. Of all the proposed methods, machine learning had been the most effective method in securing a system with capabilities ranging from early detection of software vulnerabilities to real-time detection of ongoing compromise in a system. As there are different types of cyberattacks, each of the existing state-of-the-art (...)
    Download  
     
    Export citation  
     
    Bookmark