Results for 'QBism'

15 found
Order:
  1. Respecting One’s Fellow: QBism’s Analysis of Wigner’s Friend.John B. DeBrota, Christopher A. Fuchs & Rüdiger Schack - 2020 - Foundations of Physics 50 (12):1859-1874.
    According to QBism, quantum states, unitary evolutions, and measurement operators are all understood as personal judgments of the agent using the formalism. Meanwhile, quantum measurement outcomes are understood as the personal experiences of the same agent. Wigner’s conundrum of the friend, in which two agents ostensibly have different accounts of whether or not there is a measurement outcome, thus poses no paradox for QBism. Indeed the resolution of Wigner’s original thought experiment was central to the development of QBist (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  2. After Qbism, Contextual Quantum Realism (Response to C. Fuchs’s Question).Francois-Igor Pris - 2023 - ФИЛОСОФИЯ НАУКИ 3 (98):143-165.
    In his recent paper, C. Fuchs formulates QBism in the form of eight postulates. We criticise QBism as an anti-realist position and propose an alternative – contextual quantum realism (QCR). 1. A quantum state is not “an agent’s personal judgement” (QBism), nor is it subjective (QBism), but objective (QCR). It describes not the current experience (QBism), but a state of a physical system in context (QCR). 2. A quantum measurement is a (literally) measurement of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Is QBism the Future of Quantum Physics? [REVIEW]Kelvin McQueen - 2017 - Quantum Times 2017.
    The purpose of this book is to explain Quantum Bayesianism (‘QBism’) to “people without easy access to mathematical formulas and equations” (4-5). Qbism is an interpretation of quantum mechanics that “doesn’t meddle with the technical aspects of the theory [but instead] reinterprets the fundamental terms of the theory and gives them new meaning” (3). The most important motivation for QBism, enthusiastically stated on the book’s cover, is that QBism provides “a way past quantum theory’s paradoxes and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Beyond QBism with Ontology of Knowledge iss. 20211210.Jean-Louis Boucon - 2021 - Philpapers.
    [issue 20211210] Qbism (quantum bayesism) is a philosophical interpretation of quantum mechanics (QM) that places the agent and its expectations at the heart of theory. The QBists advocate a "subjectivist" interpretation of probabilities that allows to understand the quantum laws of Born and to eliminate certain enigmas of interpretation of the QM going "beyond" the interpretation of Copenhagen. The Ontology of Knowledge (OK) is in agreement with the main ideas of the Qbism. For the OdC indeed: -The agent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Four questions about Quantum Bayesianism (QBism) and their answers by Ontology of Knowledge (OK) issue 20231208.Jean-Louis Boucon - unknown - Academia.
    The following article will attempt to highlight four questions which, in my opinion, are left unanswered (or overlooked) by QBism and to show the answers that the Ontology of Knowledge (OK) can provide. ● How does the subject come to exist for itself, individuated and persistent? ● From what common reality do world, mind, and meaning emerge? ● How does meaning emerge from the mathematical fact of probabilistic expectation? ● Is meaning animated by its own nature?
    Download  
     
    Export citation  
     
    Bookmark  
  6. What's Wrong with Interpretations of Quantum Mechanics.Paul Merriam & M. A. Z. Habeeb - manuscript
    What's wrong with Copenhagen, GRW, Superdeterminism, QBism, Many-worlds, Bohmianism, and Retrocausality, and how theses differ from Presentist Fragmentalism.
    Download  
     
    Export citation  
     
    Bookmark  
  7.  49
    Observations around Quantum Mechanics 812024.Paul Merriam & M. A. Z. Habeeb - manuscript
    Big Bang and the actual state of the universe; not information; entropic time is wrong; not discrete computation; 1-d topologies; QBism reconsidered; not Boltzmann brains; A-theories; the Big Bang and A-theories; not Boltzmann brains again.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Subjective probability and quantum certainty.Carlton M. Caves, Christopher A. Fuchs & Rüdiger Schack - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):255-274.
    In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent’s degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for the general claim that probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  9. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  10. Negativity Bounds for Weyl–Heisenberg Quasiprobability Representations.John B. DeBrota & Christopher A. Fuchs - 2017 - Foundations of Physics 47 (8):1009-1030.
    The appearance of negative terms in quasiprobability representations of quantum theory is known to be inevitable, and, due to its equivalence with the onset of contextuality, of central interest in quantum computation and information. Until recently, however, nothing has been known about how much negativity is necessary in a quasiprobability representation. Zhu :120404, 2016) proved that the upper and lower bounds with respect to one type of negativity measure are saturated by quasiprobability representations which are in one-to-one correspondence with the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  66
    The Ontic Probability Interpretation of Quantum Theory – Part IV: How to Complete Special Relativity and Merge it with Quantum Theory.Felix Alba-Juez - manuscript
    We have ignored for a century that the incompleteness of Quantum Theory (QT) is inseparable from the incompleteness of Special Relativity (RT). In this article, I claim that the latter has been gravely incomplete vis à vis the former from 1927 until today. But completing RT in the light of QT is not as simple as merely postulating nonlocality and stochasticity as “elements of reality” (which is de facto done by most physicists and pragmatic philosophers); otherwise, RT would not still (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Bayesian conditioning, the reflection principle, and quantum decoherence.Christopher A. Fuchs & Rüdiger Schack - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 233--247.
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  13. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, and others. As is known compared (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. H. A. Wiltsche and P. Berghofer (eds.): Phenomenological Approaches to Physics[REVIEW]Mahmoud Jalloh - 2021 - Phenomenological Reviews.
    A book review of _Phenomenological Approaches to Physics_ (2020) edited by H. A. Wiltsche and P. Berghofer.
    Download  
     
    Export citation  
     
    Bookmark  
  15. (1 other version)The Role of Reconstruction in the Elucidation of Quantum Theory.Philip Goya - 2023 - In Philipp Berghofer & Harald A. Wiltsche (eds.), Phenomenology and Qbism: New Approaches to Quantum Mechanics. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation