Results for 'primes of the form n^2+1'

Order:
  1. The Physical Limits of Computation Inspire an Open Problem That Concerns Decidable Sets X⊆N and Cannot Be Formalized in ZFC as It Refers to the Current Knowledge on X.Agnieszka Kozdęba & Apoloniusz Tyszka - manuscript
    Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer n≥2. Edmund Landau's conjecture states that the set P(n^2+1) of primes of the form n^2+1 is infinite. Landau's conjecture implies the following unproven statement Φ: card(P(n^2+1))<ω ⇒ P(n^2+1)⊆[2,f(7)]. Let B denote the system of equations: {x_i!=x_k: i,k∈{1,...,9}} ∪ {x_i⋅x_j=x_k: i,j,k∈{1,...,9}}. We write some system U⊆B of 9 equations which has exactly two solutions in positive integers x_9,...,x_9, namely (1,...,1) and (f(1),...,f(9)). No known system S⊆B with a finite number of (...)
    Download  
     
    Export citation  
     
    Bookmark