4 found
Order:
  1. In constructive and informal mathematics, in contradistinction to any empirical science, there are non-trivially true statements with the predicate of the current knowledge in the subject.Apoloniusz Tyszka - manuscript
    We assume that the current mathematical knowledge K is a finite set of statements from both formal and constructive mathematics, which is time-dependent and publicly available. Any theorem of any mathematician from past or present belongs to K. The set K exists only theoretically. Ignoring K and its subsets, sets exist formally in ZFC theory although their properties can be time-dependent (when they depend on K) or informal. In every branch of mathematics, the set of all knowable truths is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Statements and open problems on decidable sets X⊆N that contain informal notions and refer to the current knowledge on X.Apoloniusz Tyszka - 2022 - Journal of Applied Computer Science and Mathematics 16 (2):31-35.
    Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer n≥2. Edmund Landau's conjecture states that the set P(n^2+1) of primes of the form n^2+1 is infinite. Landau's conjecture implies the following unproven statement Φ: card(P(n^2+1))<ω ⇒ P(n^2+1)⊆[2,f(7)]. Let B denote the system of equations: {x_j!=x_k: i,k∈{1,...,9}}∪{x_i⋅x_j=x_k: i,j,k∈{1,...,9}}. The system of equations {x_1!=x_1, x_1 \cdot x_1=x_2, x_2!=x_3, x_3!=x_4, x_4!=x_5, x_5!=x_6, x_6!=x_7, x_7!=x_8, x_8!=x_9} has exactly two solutions in positive integers x_1,...,x_9, namely (1,...,1) and (f(1),...,f(9)). No known system S⊆B with a finite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Two conjectures on the arithmetic in ℝ and ℂ†.Apoloniusz Tyszka - 2010 - Mathematical Logic Quarterly 56 (2):175-184.
    Let G be an additive subgroup of ℂ, let Wn = {xi = 1, xi + xj = xk: i, j, k ∈ {1, …, n }}, and define En = {xi = 1, xi + xj = xk, xi · xj = xk: i, j, k ∈ {1, …, n }}. We discuss two conjectures. If a system S ⊆ En is consistent over ℝ, then S has a real solution which consists of numbers whose absolute values belong to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Hilbert's 10th Problem for solutions in a subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether (...)
    Download  
     
    Export citation  
     
    Bookmark