Contents
12 found
Order:
  1. Phenomenological Objects & Meaning: A Fregean & Husserlian Discussion.Daniel Sierra - manuscript
    Gottlob Frege and Edmund Husserl are two seemingly different philosophers in their methodology. Both have significantly influenced Western philosophy in that their contributions established fields within philosophy that are of intensive study today. Still, their differences in methodology have, in certain instances, yielded similar or distinct results. Their results ranged from the distinction of sense and reference, objectivity, and the theory of mathematics: specifically, their definition of number. Frege and Husserl have such striking similarities in their theory of sense and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Propositions as Intentions.Bruno Bentzen - 2023 - Husserl Studies 39 (2):143-160.
    I argue against the interpretation of propositions as intentions and proof-objects as fulfillments proposed by Heyting and defended by Tieszen and van Atten. The idea is already a frequent target of criticisms regarding the incompatibility of Brouwer’s and Husserl’s positions, mainly by Rosado Haddock and Hill. I raise a stronger objection in this paper. My claim is that even if we grant that the incompatibility can be properly dealt with, as van Atten believes it can, two fundamental issues indicate that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Machine-Believers Learning Faiths & Knowledges: The Gospel According to Chat GPT.Virgil W. Brower - 2021 - Internationales Jahrbuch Für Medienphilosophie 7 (1):97-121.
    One is occasionally reminded of Foucault's proclamation in a 1970 interview that "perhaps, one day this century will be known as Deleuzian." Less often is one compelled to update and restart with a supplementary counter-proclamation of the mathematician, David Lindley: "the twenty-first century would be a Bayesian era..." The verb tenses of both are conspicuous. // To critically attend to what is today often feared and demonized, but also revered, deployed, and commonly referred to as algorithm(s), one cannot avoid the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Husserl’s Early Semiotics and Number Signs: Philosophy of Arithmetic through the Lens of “On the Logic of Signs ”.Thomas Byrne - 2017 - Journal of the British Society for Phenomenology 48 (4):287-303.
    This paper demonstrates that Edmund Husserl’s frequently overlooked 1890 manuscript, “On the Logic of Signs,” when closely investigated, reveals itself to be the hermeneutical touchstone for his seminal 1891 Philosophy of Arithmetic. As the former comprises Husserl’s earliest attempt to account for all of the different kinds of signitive experience, his conclusions there can be directly applied to the latter, which is focused on one particular type of sign; namely, number signs. Husserl’s 1890 descriptions of motivating and replacing signs will (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  8. Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Husserl’s Philosophy of Arithmetic in Reviews.Carlo Ierna - 2013 - The New Yearbook for Phenomenology and Phenomenological Philosophy 12:198-242.
    This present collection of (translations of) reviews is intended to help obtain a more balanced picture of the reception and impact of Edmund Husserl’s first book, the 1891 Philosophy of Arithmetic. One of the insights to be gained from this non-exhaustive collection of reviews is that the Philosophy of Arithmetic had a much more widespread reception than hitherto assumed: in the present collection alone there already are fourteen, all published between 1891 and 1895. Three of the reviews appeared in mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Vers une genèse a-subjective des idéalités mathématiques. Cavaillès critique de Husserl.Dominique Pradelle - 2013 - Archives de Philosophie 76 (2):239-270.
    In this paper our purpose is to explane and discuss the essential objections Cavaillès raised to Husserlian phenomenology in his last text “On Logic and Theory of Science”. In this text Cavaillès questioned the foundational status of cogito and the capacity of consciousness to produce new ideal objects.; and he replaced this capacity with an anonymous generating necessity that would be dialectical and would take place intin the ideal domains of objects. We have to determine if such objections question every (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The Ontology of Reference: Studies in Logic and Phenomenology.Barry Smith - 1976 - Dissertation, Manchester
    Abstract: We propose a dichotomy between object-entities and meaning-entities. The former are entities such as molecules, cells, organisms, organizations, numbers, shapes, and so forth. The latter are entities such as concepts, propositions, and theories belonging to the realm of logic. Frege distinguished analogously between a ‘realm of reference’ and a ‘realm of sense’, which he presented in some passages as mutually exclusive. This however contradicts his assumption elsewhere that every entity is a referent (even Fregean senses can be referred to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark