View topic on PhilPapers for more information
Related categories

4 found
Order:
More results on PhilPapers
  1. added 2018-06-06
    Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. Springer. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2017-10-21
    Mathematics and Its Applications, A Transcendental-Idealist Perspective.Jairo Da Silva - 2017 - Springer.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. added 2016-04-17
    Frege, the Complex Numbers, and the Identity of Indiscernibles.Wenzel Christian Helmut - 2010 - Logique Et Analyse 53 (209):51-60.
    There are mathematical structures with elements that cannot be distinguished by the properties they have within that structure. For instance within the field of complex numbers the two square roots of −1, i and −i, have the same algebraic properties in that field. So how do we distinguish between them? Imbedding the complex numbers in a bigger structure, the quaternions, allows us to algebraically tell them apart. But a similar problem appears for this larger structure. There seems to be always (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. added 2013-09-02
    Frege on the Relations Between Logic and Thought.Simon Evnine - manuscript
    Frege's diatribes against psychologism have often been taken to imply that he thought that logic and thought have nothing to do with each other. I argue against this interpretation and attribute to Frege a view on which the two are tightly connected. The connection, however, derives not from logic's being founded on the empirical laws of thought but rather from thought's depending constitutively on the application to it of logic. I call this view 'psycho-logicism.'.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark