Related

Contents
7 found
Order:
  1. Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Retrieving the Mathematical Mission of the Continuum Concept from the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the transfinite deadlock of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Chance and the Continuum Hypothesis.Daniel Hoek - 2021 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to store in its (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  7. On the Reality of the Continuum Discussion Note: A Reply to Ormell, ‘Russell's Moment of Candour’, Philosophy.Anne Newstead - 2008 - Philosophy 83 (1):117-127.
    In a recent article, Christopher Ormell argues against the traditional mathematical view that the real numbers form an uncountably infinite set. He rejects the conclusion of Cantor’s diagonal argument for the higher, non-denumerable infinity of the real numbers. He does so on the basis that the classical conception of a real number is mys- terious, ineffable, and epistemically suspect. Instead, he urges that mathematics should admit only ‘well-defined’ real numbers as proper objects of study. In practice, this means excluding as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation