Switch to: References

Add citations

You must login to add citations.
  1. Classicism.Andrew Bacon & Cian Dorr - 2024 - In Peter Fritz & Nicholas K. Jones (eds.), Higher-Order Metaphysics. Oxford University Press. pp. 109-190.
    This three-part chapter explores a higher-order logic we call ‘Classicism’, which extends a minimal classical higher-order logic with further axioms which guarantee that provable coextensiveness is sufficient for identity. The first part presents several different ways of axiomatizing this theory and makes the case for its naturalness. The second part discusses two kinds of extensions of Classicism: some which take the view in the direction of coarseness of grain (whose endpoint is the maximally coarse-grained view that coextensiveness is sufficient for (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Conceptual (and Hence Mathematical) Explanation, Conceptual Grounding and Proof.Francesca Poggiolesi & Francesco Genco - 2021 - Erkenntnis:1-27.
    This paper studies the notions of conceptual grounding and conceptual explanation (which includes the notion of mathematical explanation), with an aim of clarifying the links between them. On the one hand, it analyses complex examples of these two notions that bring to the fore features that are easily overlooked otherwise. On the other hand, it provides a formal framework for modeling both conceptual grounding and conceptual explanation, based on the concept of proof. Inspiration and analogies are drawn with the recent (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Explanation by induction?Miguel Hoeltje, Benjamin Schnieder & Alex Steinberg - 2013 - Synthese 190 (3):509-524.
    Philosophers of mathematics commonly distinguish between explanatory and non-explanatory proofs. An important subclass of mathematical proofs are proofs by induction. Are they explanatory? This paper addresses the question, based on general principles about explanation. First, a recent argument for a negative answer is discussed and rebutted. Second, a case is made for a qualified positive take on the issue.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Etchemendy and Bolzano on Logical Consequence.Paul Rusnock & Mark Burke - 2010 - History and Philosophy of Logic 31 (1):3-29.
    In a series of publications beginning in the 1980s, John Etchemendy has argued that the standard semantical account of logical consequence, due in its essentials to Alfred Tarski, is fundamentally mistaken. He argues that, while Tarski's definition requires us to classify the terms of a language as logical or non-logical, no such division is guaranteed to deliver the correct extension of our pre-theoretical or intuitive consequence relation. In addition, and perhaps more importantly, Tarski's account is claimed to be incapable of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Remarks on Bolzano's Conception of Necessary Truth.Paul Rusnock - 2012 - British Journal for the History of Philosophy 20 (4):1-21.
    This essay presents a new interpretation of Bolzano's account of necessary truth as set out in ?182 of the Theory of Science. According to this interpretation, Bolzano's conception is closely related to that of Leibniz, with some important differences. In the first place, Bolzano's conception of necessary truth embraces not only what Leibniz called metaphysical or brute necessities but also moral necessities (truths grounded in God's choice of the best among all metaphysical possibilities). Second, in marked contrast to Leibniz, Bolzano (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pavel Pudlák. Logical Foundations of Mathematics and Computational Complexity: A Gentle Introduction. Springer Monographs in Mathematics. Springer, 2013. ISBN: 978-3-319-00118-0 ; 978-3-319-00119-7 . Pp. xiv + 695. [REVIEW]Alasdair Urquhart - 2015 - Philosophia Mathematica 23 (3):435-438.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bernard Bolzano. Theory of Science. Volumes I–IV. Paul Rusnock and Rolf George, trans. Oxford: Oxford University Press, 2014. ISBN: 978-0-19-968438-0. Pp. 2044. [REVIEW]Jan Sebestik - 2015 - Philosophia Mathematica 23 (3):428-435.
    Download  
     
    Export citation  
     
    Bookmark