Switch to: References

Citations of:

The Possibility of Infinitesimal Chances

In Ellery Eells & James H. Fetzer (eds.), The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 65--79 (2010)

Add citations

You must login to add citations.
  1. Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2018 - European Journal for Philosophy of Science 9 (1):8.
    A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2019 - European Journal for Philosophy of Science 9 (1):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson and Benci et al. have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Weintraub’s response to Williamson’s coin flip argument.Matthew W. Parker - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. Williamson argued that we should not require probabilities to be regular, for if we do, certain “isomorphic” physical events must have different probabilities, which is implausible. His remarks suggest an assumption that chances are determined by intrinsic, qualitative circumstances. Weintraub responds that Williamson’s coin flip events differ in their inclusion relations to each other, or the inclusion relations between their times, and this can account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The normative status of logic.Florian Steinberger - 2017 - Stanford Enyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Timothy Williamson’s Coin-Flipping Argument: Refuted Prior to Publication?Colin Howson - 2019 - Erkenntnis 86 (3):575-583.
    In a well-known paper, Timothy Williamson claimed to prove with a coin-flipping example that infinitesimal-valued probabilities cannot save the principle of Regularity, because on pain of inconsistency the event ‘all tosses land heads’ must be assigned probability 0, whether the probability function is hyperreal-valued or not. A premise of Williamson’s argument is that two infinitary events in that example must be assigned the same probability because they are isomorphic. It was argued by Howson that the claim of isomorphism fails, but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations