Switch to: References

Add citations

You must login to add citations.
  1. Standardization principle of nonstandard universes.Masahiko Murakami - 1999 - Journal of Symbolic Logic 64 (4):1645-1655.
    A bounded ultrasheaf is a nonstandard universe constructed from a superstructure in a Boolean valued model of set theory. We consider the bounded elementary embeddings between bounded ultrasheaves. Then the standardization principle is true if and only if the ultrafilters are comparable by the Rudin-Frolik order. The base concept is that the bounded elementary embeddings correspond to the complete Boolean homomorphisms. We represent this by the Rudin-Keisler order of ultrafilters of Boolean algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • On generic extensions without the axiom of choice.G. P. Monro - 1983 - Journal of Symbolic Logic 48 (1):39-52.
    Let ZF denote Zermelo-Fraenkel set theory (without the axiom of choice), and let $M$ be a countable transitive model of ZF. The method of forcing extends $M$ to another model $M\lbrack G\rbrack$ of ZF (a "generic extension"). If the axiom of choice holds in $M$ it also holds in $M\lbrack G\rbrack$, that is, the axiom of choice is preserved by generic extensions. We show that this is not true for many weak forms of the axiom of choice, and we derive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Markov's principle, isols and Dedekind finite sets.Charles McCarty - 1988 - Journal of Symbolic Logic 53 (4):1042-1069.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logical rules and the determinacy of meaning.Charles McCarty - 2018 - Studies in Logic, Grammar and Rhetoric 54 (1):89-98.
    The use of conventional logical connectives either in logic, in mathematics, or in both cannot determine the meanings of those connectives. This is because every model of full conventional set theory can be extended conservatively to a model of intuitionistic set plus class theory, a model in which the meanings of the connectives are decidedly intuitionistic and nonconventional. The reasoning for this conclusion is acceptable to both intuitionistic and classical mathematicians. En route, I take a detour to prove that, given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Believing the axioms. I.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (2):481-511.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi. [REVIEW]Jerzy Król - 2006 - Foundations of Physics 36 (7):1070-1098.
    We analyse the proposition that the spacetime structure is modified at short distances or at high energies due to weakening of classical logic. The logic assigned to the regions of spacetime is intuitionistic logic of some topoi. Several cases of special topoi are considered. The quantum mechanical effects can be generated by such semi-classical spacetimes. The issues of: background independence and general relativity covariance, field theoretic renormalization of divergent expressions, the existence and definition of path integral measures, are briefly discussed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Background Independence in Quantum Gravity and Forcing Constructions.Jerzy Król - 2004 - Foundations of Physics 34 (3):361-403.
    A general duality connecting the level of a formal theory and of a metatheory is proposed. Because of the role of natural numbers in a metatheory the existence of a dual theory is conjectured, in which the natural numbers become formal in the theory but in formalizing non-formal natural numbers taken from the dual metatheory these numbers become nonstandard. For any formal theory there may be in principle a dual theory. The dual shape of the lattice of projections over separable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Heyting-valued interpretations for Constructive Set Theory.Nicola Gambino - 2006 - Annals of Pure and Applied Logic 137 (1-3):164-188.
    We define and investigate Heyting-valued interpretations for Constructive Zermelo–Frankel set theory . These interpretations provide models for CZF that are analogous to Boolean-valued models for ZF and to Heyting-valued models for IZF. Heyting-valued interpretations are defined here using set-generated frames and formal topologies. As applications of Heyting-valued interpretations, we present a relative consistency result and an independence proof.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Cohen and set theory.Akihiro Kanamori - 2008 - Bulletin of Symbolic Logic 14 (3):351-378.
    We discuss the work of Paul Cohen in set theory and its influence, especially the background, discovery, development of forcing.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Two episodes in the unification of logic and topology.E. R. Grosholz - 1985 - British Journal for the Philosophy of Science 36 (2):147-157.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the role of the baire category theorem and dependent choice in the foundations of logic.Robert Goldblatt - 1985 - Journal of Symbolic Logic 50 (2):412-422.
    The Principle of Dependent Choice is shown to be equivalent to: the Baire Category Theorem for Čech-complete spaces (or for complete metric spaces); the existence theorem for generic sets of forcing conditions; and a proof-theoretic principle that abstracts the "Henkin method" of proving deductive completeness of logical systems. The Rasiowa-Sikorski Lemma is shown to be equivalent to the conjunction of the Ultrafilter Theorem and the Baire Category Theorem for compact Hausdorff spaces.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Epistemic set theory is a conservative extension of intuitionistic set theory.R. C. Flagg - 1985 - Journal of Symbolic Logic 50 (4):895-902.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Cosmological choices.David Finkelstein - 1982 - Synthese 50 (3):399 - 420.
    Present physics is a mix of theories of time, logic, and matter. These may have a common origin in a unitary quantum cosmology founded on process alone. A quantum theory of sets, or something like it, is helpful for such a cosmology, and one is constructed by adding superposition to a slightly reformulated classical set theory. There is an elementary or atomic process in such theories. The size of its characteristic time is estimated from the mass spectrum, although this gives (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Topos Theory in Montréal in the 1970s: My Personal Involvement.Gonzalo E. Reyes - 2019 - History and Philosophy of Logic 40 (4):389-402.
    Volume 40, Issue 4, November 2019, Page 389-402.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical quantum theory I: Random ultrafilters as hidden variables.William Boos - 1996 - Synthese 107 (1):83 - 143.
    The basic purpose of this essay, the first of an intended pair, is to interpret standard von Neumann quantum theory in a framework of iterated measure algebraic truth for mathematical (and thus mathematical-physical) assertions — a framework, that is, in which the truth-values for such assertions are elements of iterated boolean measure-algebras (cf. Sections 2.2.9, 5.2.1–5.2.6 and 5.3 below).The essay itself employs constructions of Takeuti's boolean-valued analysis (whose origins lay in work of Scott, Solovay, Krauss and others) to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Recollections of logicians, mathematicians and philosophers.John L. Bell - 2023 - Logic Journal of the IGPL 31 (6):1232-1250.
    Download  
     
    Export citation  
     
    Bookmark  
  • From absolute to local mathematics.J. L. Bell - 1986 - Synthese 69 (3):409 - 426.
    In this paper (a sequel to [4]) I put forward a "local" interpretation of mathematical concepts based on notions derived from category theory. The fundamental idea is to abandon the unique absolute universe of sets central to the orthodox set-theoretic account of the foundations of mathematics, replacing it by a plurality of local mathematical frameworks - elementary toposes - defined in category-theoretic terms.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Supercompact cardinals and trees of normal ultrafilters.Julius B. Barbanel - 1982 - Journal of Symbolic Logic 47 (1):89-109.
    Download  
     
    Export citation  
     
    Bookmark  
  • V = L and intuitive plausibility in set theory. A case study.Tatiana Arrigoni - 2011 - Bulletin of Symbolic Logic 17 (3):337-360.
    What counts as an intuitively plausible set theoretic content (notion, axiom or theorem) has been a matter of much debate in contemporary philosophy of mathematics. In this paper I develop a critical appraisal of the issue. I analyze first R. B. Jensen's positions on the epistemic status of the axiom of constructibility. I then formulate and discuss a view of intuitiveness in set theory that assumes it to hinge basically on mathematical success. At the same time, I present accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Second‐Order Logic and Set Theory.Jouko Väänänen - 2015 - Philosophy Compass 10 (7):463-478.
    Both second-order logic and set theory can be used as a foundation for mathematics, that is, as a formal language in which propositions of mathematics can be expressed and proved. We take it upon ourselves in this paper to compare the two approaches, second-order logic on one hand and set theory on the other hand, evaluating their merits and weaknesses. We argue that we should think of first-order set theory as a very high-order logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The axiomatization of randomness.Michiel van Lambalgen - 1990 - Journal of Symbolic Logic 55 (3):1143-1167.
    We present a faithful axiomatization of von Mises' notion of a random sequence, using an abstract independence relation. A byproduct is a quantifier elimination theorem for Friedman's "almost all" quantifier in terms of this independence relation.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • A transfer principle in harmonic analysis.Gaisi Takeuti - 1979 - Journal of Symbolic Logic 44 (3):417-440.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Commutative regular rings and Boolean-valued fields.Kay Smith - 1984 - Journal of Symbolic Logic 49 (1):281-297.
    In this paper we present an equivalence between the category of commutative regular rings and the category of Boolean-valued fields, i.e., Boolean-valued sets for which the field axioms are true. The author used this equivalence in [12] to develop a Galois theory for commutative regular rings. Here we apply the equivalence to give an alternative construction of an algebraic closure for any commutative regular ring.Boolean-valued sets were developed in 1965 by Scott and Solovay [10] to simplify independence proofs in set (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The consequence relation preserving logical information.Andrzej Pietruszczak - 2004 - Logic and Logical Philosophy 13:89-120.
    Information is contained in statements and «flows» from their structure and meaning of expressions they contain. The information that flows only from the meaning of logical constants and logical structure of statements we will call logical information. In this paper we present a formal explication of this notion which is proper for sentences being Boolean combination of atomic sentences. 1 Therefore we limit ourselves to analyzing logical information flowing only from the meaning of truth-value connectives and logical structure of sentences (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scott incomplete Boolean ultrapowers of the real line.Masanao Ozawa - 1995 - Journal of Symbolic Logic 60 (1):160-171.
    An ordered field is said to be Scott complete iff it is complete with respect to its uniform structure. Zakon has asked whether nonstandard real lines are Scott complete. We prove in ZFC that for any complete Boolean algebra B which is not (ω, 2)-distributive there is an ultrafilter U of B such that the Boolean ultrapower of the real line modulo U is not Scott complete. We also show how forcing in set theory gives rise to examples of Boolean (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Topological Foundations of Cognitive Science.Carola Eschenbach, Christopher Habel & Barry Smith (eds.) - 1984 - Hamburg: Graduiertenkolleg Kognitionswissenschaft.
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum theory to define (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • All the mathematics in the world: logical validity and classical set theory.David Charles McCarty - 2017 - Philosophical Problems in Science 63:5-29.
    A recognizable topological model construction shows that any consistent principles of classical set theory, including the validity of the law of the excluded third, together with a standard class theory, do not suffice to demonstrate the general validity of the law of the excluded third. This result calls into question the classical mathematician's ability to offer solid justifications for the logical principles he or she favors.
    Download  
     
    Export citation  
     
    Bookmark  
  • W.D. Hart, The Evolution of Logic. [REVIEW]Cristian Alejandro Gutiérrez Ramírez - 2014 - Critica 46 (137):129-137.
    Download  
     
    Export citation  
     
    Bookmark