Switch to: References

Add citations

You must login to add citations.
  1. The Weirdness of the World.Eric Schwitzgebel - 2024 - Princeton University Press.
    How all philosophical explanations of human consciousness and the fundamental structure of the cosmos are bizarre—and why that’s a good thing Do we live inside a simulated reality or a pocket universe embedded in a larger structure about which we know virtually nothing? Is consciousness a purely physical matter, or might it require something extra, something nonphysical? According to the philosopher Eric Schwitzgebel, it’s hard to say. In The Weirdness of the World, Schwitzgebel argues that the answers to these fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Explanation as a Guide to Ground.Markel Kortabarria & Joaquim Giannotti - 2024 - Synthese 203 (3):1-27.
    Ground is all the rage in contemporary metaphysics. But what is its nature? Some metaphysicians defend what we could call, following Skiles and Trogdon (2021), the inheritance view: it is because constitutive forms of metaphysical explanation are such-and-such that we should believe that ground is so-and-so. However, many putative instances of inheritance are not primarily motivated by scientific considerations. This limitation is harmless if one thinks that ground and science are best kept apart. Contrary to this view, we believe that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. Distributed information is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Higher Dimension of Consciousness: Constructing an empirically falsifiable panpsychist model of consciousness.Jacob Jolij - manuscript
    Panpsychism is a solution to the mind-body problem that presumes that consciousness is a fundamental aspect of reality instead of a product or consequence of physical processes (i.e., brain activity). Panpsychism is an elegant solution to the mind-body problem: it effectively rids itself of the explanatory gap materialist theories of consciousness suffer from. However, many theorists and experimentalists doubt panpsychism can ever be successful as a scientific theory, as it cannot be empirically verified or falsified. In this paper, I present (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interacting Minds in the Physical World.Alin C. Cucu - 2022 - Dissertation, University of Lausanne
    Mental causation, idea that it is us – via our minds – who cause bodily actions is as commonsensical as it is indispensable for our understanding of ourselves as rational agents. Somewhat less uncontroversial, but nonetheless widespread (at least among ordinary people) is the idea that the mind is non-physical, following the intuition that what is physical can neither act nor think nor judge morally. Taken together, and cast into a metaphysical thesis, the two intuitions yield interactive dualism: the view (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Role of Reconstruction in the Elucidation of Quantum Theory.Philip Goya - 2023 - In Philipp Berghofer & Harald A. Wiltsche (eds.), Phenomenology and Qbism: New Approaches to Quantum Mechanics. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Indeterminism, Free Will, and Self-Causation.Marco Masi - 2023 - Journal of Consciousness Studies 30 (5-6):32–56.
    A view that emancipates free will by means of quantum indeterminism is frequently rejected based on arguments pointing out its incompatibility with what we know about quantum physics. However, if one carefully examines what classical physical causal determinism and quantum indeterminism are according to physics, it becomes clear what they really imply–and, especially, what they do not imply–for agent-causation theories. Here, we will make necessary conceptual clarifications on some aspects of physical determinism and indeterminism, review some of the major objections (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A taxonomy for the mereology of entangled quantum systems.Paul M. Näger & Niko Strobach - manuscript
    The emerging field of quantum mereology considers part-whole relations in quantum systems. Entangled quantum systems pose a peculiar problem in the field, since their total states are not reducible to that of their parts. While there exist several established proposals for modelling entangled systems, like monistic holism or relational holism, there is considerable unclarity, which further positions are available. Using the lambda operator and plural logic as formal tools, we review and develop conceivable models and evaluate their consistency and distinctness. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields such as feminist science (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the Probable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary particle, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time and Information in the Foundations of Physics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (25):1-12.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, and information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Occasionalism.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    Both transition and transformation link the ideal and material into a whole. Future is what “causes” the present, and the latter in turn is what “causes” the past. That kind of “reverse causality” needs free choice and free will in the present in order to be able to be realized unlike classical causality. A few properties feature the concept of “quantum occasionalism” as follows. Some hypothetical entity generates successively a series of well-ordered states. That hypothetical entity is called “coherent state” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two notions of holism.Elizabeth Miller - 2020 - Synthese 197 (10):4187-4206.
    A simple argument proposes a direct link between realism about quantum mechanics and one kind of metaphysical holism: if elementary quantum theory is at least approximately true, then there are entangled systems with intrinsic whole states for which the intrinsic properties and spatiotemporal arrangements of salient subsystem parts do not suffice. Initially, the proposal is compelling: we can find variations on such reasoning throughout influential discussions of entanglement. Upon further consideration, though, this simple argument proves a bit too simple. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
    The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More Than Impossible: Negative and Complex Probabilities and Their Philosophical Interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (16):1-7.
    A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among infinitely many alternatives, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. Quantum in-variance designates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Atomism in Quantum Mechanics and Information.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (12):1-11.
    The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantum mechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (even smooth) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inductive Logic from the Viewpoint of Quantum Information.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (13):1-2.
    The resolving of the main problem of quantum mechanics about how a quantum leap and a smooth motion can be uniformly described resolves also the problem of how a distribution of reliable data and a sequence of deductive conclusions can be uniformly described by means of a relevant wave function “Ψdata”.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on material processes. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Block Universe: A Philosophical Investigation in Four Dimensions.Pieter Thyssen - 2020 - Dissertation, Ku Leuven
    The aim of this doctoral dissertation is to closely explore the nature of Einstein’s block universe and to tease out its implications for the nature of time and human freedom. Four questions, in particular, are central to this dissertation, and set out the four dimensions of this philosophical investigation: (1) Does the block universe view of time follow inevitably from the theory of special relativity? (2) Is there room for the passage of time in the block universe? (3) Can we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • God's Dice.Vasil Penchev - 2015 - In S. Oms, J. Martínez, M. García-Carpintero & J. Díez (eds.), Actas: VIII Conference of the Spanish Society for Logic, Methodology, and Philosophy of Sciences. Barcelona: Universitat de Barcelona. pp. 297-303.
    Einstein wrote his famous sentence "God does not play dice with the universe" in a letter to Max Born in 1920. All experiments have confirmed that quantum mechanics is neither wrong nor “incomplete”. One can says that God does play dice with the universe. Let quantum mechanics be granted as the rules generalizing all results of playing some imaginary God’s dice. If that is the case, one can ask how God’s dice should look like. God’s dice turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A probabilistic framework for analysing the compositionality of conceptual combinations.Peter Bruza, Kirsty Kitto, Brentyn Ramm & Laurianne Sitbon - 2015 - Journal of Mathematical Psychology 67:26-38.
    Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. While the systematicity and productivity of language provide a strong argument in favor of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Why Interpret Quantum Physics?Edward MacKinnon - 2016 - Open Journal of Philosophy 6 (1):86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field theory that led to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Superhumans: Super-Language?Vasil Penchev - 2016 - Dialogue and Universalism 26 (1):79-89.
    The paper questions the scientific rather than ideological problem of an eventual biological successor of the mankind. The concept of superhumans is usually linked to Nietzsche or to Heidegger’s criticism or even to the ideology of Nazism. However, the superhuman can be also viewed as that biological species who will originate from humans eventually in the course of evolution.While the society is reached a natural limitation of globalism, technics depends on the amount of utilized energy, and the mind is restricted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fine ways to fail to secure local realism.Soazig Le Bihan - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):142-150.
    Since he proved his theorem in 1982, Fine has been challenging the traditional interpretation of the experimental violation of the Bell Inequalities. A natural interpretation of Fine's theorem is that it provides us with an alternative set of assumptions on which to place blame for the failure of the BI, and opens to a new interpretation of the violation of the BI. Fine has a stronger interpretation for his theorem. He claims that his result undermines the traditional interpretation in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a Realistic Interpretation of Quantum Mechanics Providing a Model of the Physical World.Emilio Santos - 2015 - Foundations of Science 20 (4):357-386.
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from “Copenhagen” to “many worlds” are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave–particle duality and the Bell inequalities are analyzed. The sketch of a realistic picture of the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The causal mechanical model of explanation.James Woodward - 1989 - Minnesota Studies in the Philosophy of Science 13:359-83.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Ephemeral Properties and the Illusion of Microscopic Particles.Massimiliano Sassoli de Bianchi - 2011 - Foundations of Science 16 (4):393-409.
    Founding our analysis on the Geneva-Brussels approach to quantum mechanics, we use conventional macroscopic objects as guiding examples to clarify the content of two important results of the beginning of twentieth century: Einstein–Podolsky–Rosen’s reality criterion and Heisenberg’s uncertainty principle. We then use them in combination to show that our widespread belief in the existence of microscopic particles is only the result of a cognitive illusion, as microscopic particles are not particles, but are instead the ephemeral spatial and local manifestations of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Chance versus Randomness.Antony Eagle - 2010 - Stanford Encyclopedia of Philosophy.
    This article explores the connection between objective chance and the randomness of a sequence of outcomes. Discussion is focussed around the claim that something happens by chance iff it is random. This claim is subject to many objections. Attempts to save it by providing alternative theories of chance and randomness, involving indeterminism, unpredictability, and reductionism about chance, are canvassed. The article is largely expository, with particular attention being paid to the details of algorithmic randomness, a topic relatively unfamiliar to philosophers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Causation, Measurement Relevance and No-conspiracy in EPR.Iñaki San Pedro - 2012 - European Journal for Philosophy of Science 2 (1):137-156.
    In this paper I assess the adequacy of no-conspiracy conditions employed in the usual derivations of the Bell inequality in the context of EPR correlations. First, I look at the EPR correlations from a purely phenomenological point of view and claim that common cause explanations of these cannot be ruled out. I argue that an appropriate common cause explanation requires that no-conspiracy conditions are reinterpreted as mere common cause-measurement independence conditions. In the right circumstances then, violations of measurement independence need (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Bohmian mechanics.Sheldon Goldstein - 2008 - Stanford Encyclopedia of Philosophy.
    Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave model, and the causal interpretation of quantum mechanics, is a version of quantum theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952. It is the simplest example of what is often called a hidden variables interpretation of quantum mechanics. In Bohmian mechanics a system of particles is described in part by its wave function, evolving, as usual, according to Schrödinger's equation. However, the (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Holism and nonseparability in physics.Richard Healey - 2008 - Stanford Encyclopedia of Philosophy.
    It has sometimes been suggested that quantum phenomena exhibit a characteristic holism or nonseparability, and that this distinguishes quantum from classical physics. One puzzling quantum phenomenon arises when one performs measurements of spin or polarization on certain separated quantum systems. The results of these measurements exhibit patterns of statistical correlation that resist traditional causal explanation. Some have held that it is possible to understand these patterns as instances or consequences of quantum holism or nonseparability. Just what holism and nonseparability are (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • A philosopher looks at quantum mechanics (again).Hilary Putnam - 2005 - British Journal for the Philosophy of Science 56 (4):615-634.
    A Philosopher Looks at Quantum Mechanics’ (Putnam [1965]) explained why the interpretation of quantum mechanics is a philosophical problem in detail, but with only the necessary minimum of technicalities, in the hope of making the difficulties intelligible to as wide an audience as possible. When I wrote it, I had not seen Bell ([1964]), nor (of course) had I seen Ghirardi et al. ([1986]). And I did not discuss the ‘Many Worlds’ interpretation. For all these reasons, I have decided to (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Common causes and the direction of causation.Brad Weslake - 2005 - Minds and Machines 16 (3):239-257.
    Is the common cause principle merely one of a set of useful heuristics for discovering causal relations, or is it rather a piece of heavy duty metaphysics, capable of grounding the direction of causation itself? Since the principle was introduced in Reichenbach’s groundbreaking work The Direction of Time (1956), there have been a series of attempts to pursue the latter program—to take the probabilistic relationships constitutive of the principle of the common cause and use them to ground the direction of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The preferred basis problem in the many-worlds interpretation of quantum mechanics: why decoherence does not solve it.Meir Hemmo & Orly Shenker - 2022 - Synthese 200 (3):1-25.
    We start by very briefly describing the measurement problem in quantum mechanics and its solution by the Many Worlds Interpretation. We then describe the preferred basis problem, and the role of decoherence in the MWI. We discuss a number of approaches to the preferred basis problem and argue that contrary to the received wisdom, decoherence by itself does not solve the problem. We address Wallace’s emergentist approach based on what he calls Dennett’s criterion, and we compare the logical structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Pauli–Jung Conjecture and Its Relatives: A Formally Augmented Outline.Harald Atmanspacher - 2020 - Open Philosophy 3 (1):527-549.
    The dual-aspect monist conjecture launched by Pauli and Jung in the mid-20th century will be couched in somewhat formal terms to characterize it more concisely than by verbal description alone. After some background material situating the Pauli–Jung conjecture among other conceptual approaches to the mind–matter problem, the main body of this paper outlines its general framework of a basic psychophysically neutral reality with its derivative mental and physical aspects and the nature of the correlations that connect these aspects. Some related (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be seen as informational in a generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time: From the Totality to Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (24):1-14.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, and information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The temporal foundation of the principle of maximal entropy.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (11):1-3.
    The principle of maximal entropy (further abbreviated as “MaxEnt”) can be founded on the formal mechanism, in which future transforms into past by the mediation of present. This allows of MaxEnt to be investigated by the theory of quantum information. MaxEnt can be considered as an inductive analog or generalization of “Occam’s razor”. It depends crucially on choice and thus on information just as all inductive methods of reasoning. The essence shared by Occam’s razor and MaxEnt is for the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Heuristics and Tests of Quantum Gravity.Nicolae Sfetcu - manuscript
    For the attempt to create a gravitational quantum theory, there are several research programs, some of which became obsolete over time due to the higher heuristic power of other programs. The primordial test of any quantum theory of gravity is the reproduction of the successes of general relativity. This involves reconstructing the local geometry from the non-local observables. In addition, quantum gravity should probabilistically predict the large-scale topology of the Universe, which may soon be measurable, and phenomena at the Planck (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontic Probability Interpretation of Quantum Theory - Part II: Einstein's Incompleteness/Nonlocality Dilemma (2nd edition).Felix Alba-Juez - manuscript
    After identifying in Part I [1] a conceptual confusion (TCC), a Reality preconception (TRP1), and a fallacious dichotomy (TFD), the famous EPR/EPRB [2] [3] [4] [5] [6] argument for correlated ‘particles’ is now studied in the light of the Ontic Probability Interpretation of Quantum Theory (QT/TOPI). Another Reality preconception (TRP2) is found, showing that EPR used and ignored QT predictions in a single paralogism. Employing TFD and TRP2, EPR unveiled a contradiction veiled in its premises. By removing nonlocality from QT’s (...)
    Download  
     
    Export citation  
     
    Bookmark