Switch to: References

Citations of:

Philosophy of mathematics: selected readings

New York: Cambridge University Press (1983)

Add citations

You must login to add citations.
  1. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The unbearable circularity of easy ontology.Jonas Raab - 2021 - Synthese 199 (1-2):3527-3556.
    In this paper, I argue that Amie Thomasson’s Easy Ontology rests on a vicious circularity that is highly damaging. Easy Ontology invokes the idea of application conditions that give rise to analytic entailments. Such entailments can be used to answer ontological questions easily. I argue that the application conditions for basic terms are only circularly specifiable showing that Thomasson misses her self-set goal of preventing such a circularity. Using this circularity, I go on to show that Easy Ontology as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explaining essences.Michael J. Raven - 2020 - Philosophical Studies 178 (4):1043-1064.
    This paper explores the prospects of combining two views. The first view is metaphysical rationalism : all things have an explanation. The second view is metaphysical essentialism: there are real essences. The exploration is motivated by a conflict between the views. Metaphysical essentialism posits facts about essences. Metaphysical rationalism demands explanations for all facts. But facts about essences appear to resist explanation. I consider two solutions to the conflict. Exemption solutions attempt to exempt facts about essences from the demand for (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Rota on Mathematical Identity: Crossing Roads with Husserl and Frege.Demetra Christopoulou - 2019 - Axiomathes 29 (4):383-396.
    In this paper I address G. C. Rota’s account of mathematical identity and I attempt to relate it with aspects of Frege as well as Husserl’s views on the issue. After a brief presentation of Rota’s distinction among mathematical facts and mathematical proofs, I highlight the phenomenological background of Rota’s claim that mathematical objects retain their identity through different kinds of axiomatization. In particular, I deal with Rota’s interpretation of the ontological status of mathematical objects in terms of ideality. Then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strict Finitism, Feasibility, and the Sorites.Walter Dean - 2018 - Review of Symbolic Logic 11 (2):295-346.
    This article bears on four topics: observational predicates and phenomenal properties, vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability. It is argued that reactions to strict finitism point towards a semantics for vague predicates in the form of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize the notion of feasibility as understood in computational complexity theory. The approach described eschews the use of nonclassical logic and related devices like degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Gödel's Argument for Cantorian Cardinality.Matthew W. Parker - 2017 - Noûs 53 (2):375-393.
    On the first page of “What is Cantor's Continuum Problem?”, Gödel argues that Cantor's theory of cardinality, where a bijection implies equal number, is in some sense uniquely determined. The argument, involving a thought experiment with sets of physical objects, is initially persuasive, but recent authors have developed alternative theories of cardinality that are consistent with the standard set theory ZFC and have appealing algebraic features that Cantor's powers lack, as well as some promise for applications. Here we diagnose Gödel's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • We hold these truths to be self-evident: But what do we mean by that?: We hold these truths to be self-evident.Stewart Shapiro - 2009 - Review of Symbolic Logic 2 (1):175-207.
    At the beginning of Die Grundlagen der Arithmetik [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Theological Underpinnings of the Modern Philosophy of Mathematics.Vladislav Shaposhnikov - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):147-168.
    The study is focused on the relation between theology and mathematics in the situation of increasing secularization. My main concern in the second part of this paper is the early-twentieth-century foundational crisis of mathematics. The hypothesis that pure mathematics partially fulfilled the functions of theology at that time is tested on the views of the leading figures of the three main foundationalist programs: Russell, Hilbert and Brouwer.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the circularity of set-theoretic semantics for set theory.Luca Bellotti - 2014 - Epistemologia 37 (1):58-78.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Intellectual Given.John Bengson - 2015 - Mind 124 (495):707-760.
    Intuition is sometimes derided as an abstruse or esoteric phenomenon akin to crystal-ball gazing. Such derision appears to be fuelled primarily by the suggestion, evidently endorsed by traditional rationalists such as Plato and Descartes, that intuition is a kind of direct, immediate apprehension akin to perception. This paper suggests that although the perceptual analogy has often been dismissed as encouraging a theoretically useless metaphor, a quasi-perceptualist view of intuition may enable rationalists to begin to meet the challenge of supplying a (...)
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Hierarchies Ontological and Ideological.Øystein Linnebo & Agustín Rayo - 2012 - Mind 121 (482):269 - 308.
    Gödel claimed that Zermelo-Fraenkel set theory is 'what becomes of the theory of types if certain superfluous restrictions are removed'. The aim of this paper is to develop a clearer understanding of Gödel's remark, and of the surrounding philosophical terrain. In connection with this, we discuss some technical issues concerning infinitary type theories and the programme of developing the semantics for higher-order languages in other higher-order languages.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Is Intuition Based On Understanding?[I thank Jo].Elijah Chudnoff - 2013 - Philosophy and Phenomenological Research 86 (1):42-67.
    According to the most popular non-skeptical views about intuition, intuitions justify beliefs because they are based on understanding. More precisely: if intuiting that p justifies you in believing that p it does so because your intuition is based on your understanding of the proposition that p. The aim of this paper is to raise some challenges for accounts of intuitive justification along these lines. I pursue this project from a non-skeptical perspective. I argue that there are cases in which intuiting (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Story About Propositions.Bradley Armour-Garb & James A. Woodbridge - 2010 - Noûs 46 (4):635-674.
    It is our contention that an ontological commitment to propositions faces a number of problems; so many, in fact, that an attitude of realism towards propositions—understood the usual “platonistic” way, as a kind of mind- and language-independent abstract entity—is ultimately untenable. The particular worries about propositions that marshal parallel problems that Paul Benacerraf has raised for mathematical platonists. At the same time, the utility of “proposition-talk”—indeed, the apparent linguistic commitment evident in our use of 'that'-clauses (in offering explanations and making (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Rationalism and the Content of Intuitive Judgements.Anna-Sara Malmgren - 2011 - Mind 120 (478):263-327.
    It is commonly held that our intuitive judgements about imaginary problem cases are justified a priori, if and when they are justified at all. In this paper I defend this view — ‘rationalism’ — against a recent objection by Timothy Williamson. I argue that his objection fails on multiple grounds, but the reasons why it fails are instructive. Williamson argues from a claim about the semantics of intuitive judgements, to a claim about their psychological underpinnings, to the denial of rationalism. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • To and from philosophy — discussions with gödel and Wittgenstein.Hao Wang - 1991 - Synthese 88 (2):229 - 277.
    I propose to sketch my views on several aspects of the philosophy of mathematics that I take to be especially relevant to philosophy as a whole. The relevance of my discussion would, I think, become more evident, if the reader keeps in mind the function of (the philosophy of) mathematics in philosophy in providing us with more transparent aspects of general issues. I shall consider: (1) three familiar examples; (2) logic and our conceptual frame; (3) communal agreement and objective certainty; (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A leśniewskian re-examination of Goodman's nominalistic rejection of classes.Judith M. Prakel - 1983 - Topoi 2 (1):87-98.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rigorous proof and the history of mathematics: Comments on Crowe.Douglas Jesseph - 1990 - Synthese 83 (3):449 - 453.
    Duhem's portrayal of the history of mathematics as manifesting calm and regular development is traced to his conception of mathematical rigor as an essentially static concept. This account is undermined by citing controversies over rigorous demonstration from the eighteenth and twentieth centuries.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Type Distinctions and Expressivity.Salvatore Florio - 2023 - Proceedings of the Aristotelian Society 123 (2):150-172.
    Quine maintained that philosophical and scientific theorizing should be conducted in an untyped language, which has just one style of variables and quantifiers. By contrast, typed languages, such as those advocated by Frege and Russell, include multiple styles of variables and matching kinds of quantification. Which form should our theories take? In this article, I argue that expressivity does not favour typed languages over untyped ones.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Logic and Philosophy of Mathematics in the Early Husserl - By Stefania Centrone. [REVIEW]Matteo Plebani - 2011 - Dialectica 65 (3):477-482.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why it doesn’t matter whether the virtues are truth-conducive.Robert William Fischer - 2014 - Synthese 191 (6):1-15.
    A potential explanation of a fact is a hypothesis such that, if it were true, it would explain the fact in question. Let’s suppose that we become aware of a fact and some potential explanations thereof. Let’s also suppose that we would like to believe the truth. Given this aim, we can ask two questions. First, is it likely that one of these hypotheses is true? Second, given an affirmative answer to the first question, which one is it likely to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Carl Hempel.James Fetzer - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Skolem and the löwenheim-skolem theorem: a case study of the philosophical significance of mathematical results.Alexander George - 1985 - History and Philosophy of Logic 6 (1):75-89.
    The dream of a community of philosophers engaged in inquiry with shared standards of evidence and justification has long been with us. It has led some thinkers puzzled by our mathematical experience to look to mathematics for adjudication between competing views. I am skeptical of this approach and consider Skolem's philosophical uses of the Löwenheim-Skolem Theorem to exemplify it. I argue that these uses invariably beg the questions at issue. I say ?uses?, because I claim further that Skolem shifted his (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Rereading Tarski on logical consequence.Mario Gómez-Torrente - 2009 - Review of Symbolic Logic 2 (2):249-297.
    I argue that recent defenses of the view that in 1936 Tarski required all interpretations of a language to share one same domain of quantification are based on misinterpretations of Tarski’s texts. In particular, I rebut some criticisms of my earlier attack on the fixed-domain exegesis and I offer a more detailed report of the textual evidence on the issue than in my earlier work. I also offer new considerations on subsisting issues of interpretation concerning Tarski’s views on the logical (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Inscrutability and its discontents.Vann McGee - 2005 - Noûs 39 (3):397–425.
    That reference is inscrutable is demonstrated, it is argued, not only by W. V. Quine's arguments but by Peter Unger's "Problem of the Many." Applied to our own language, this is a paradoxical result, since nothing could be more obvious to speakers of English than that, when they use the word "rabbit," they are talking about rabbits. The solution to this paradox is to take a disquotational view of reference for one's own language, so that "When I use 'rabbit,' I (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Can structuralism solve the ‘access’ problem?Fraser MacBride - 2004 - Analysis 64 (4):309–317.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Plural quantification exposed.Øystein Linnebo - 2003 - Noûs 37 (1):71–92.
    This paper criticizes George Boolos's famous use of plural quantification to argue that monadic second-order logic is pure logic. I deny that plural quantification qualifies as pure logic and express serious misgivings about its alleged ontological innocence. My argument is based on an examination of what is involved in our understanding of the impredicative plural comprehension schema.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Syntactic reductionism.Richard Heck - 2000 - Philosophia Mathematica 8 (2):124-149.
    Syntactic Reductionism, as understood here, is the view that the ‘logical forms’ of sentences in which reference to abstract objects appears to be made are misleading so that, on analysis, we can see that no expressions which even purport to refer to abstract objects are present in such sentences. After exploring the motivation for such a view, and arguing that no previous argument against it succeeds, sentences involving generalized quantifiers, such as ‘most’, are examined. It is then argued, on this (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Ontological commitment.Agustín Rayo - 2007 - Philosophy Compass 2 (3):428–444.
    I propose a way of thinking aboout content, and a related way of thinking about ontological commitment. (This is part of a series of four closely related papers. The other three are ‘On Specifying Truth-Conditions’, ‘An Actualist’s Guide to Quantifying In’ and ‘An Account of Possibility’.).
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Exploring the Philosophy of Mathematics: Beyond Logicism and Platonism.Richard Startup - 2024 - Open Journal of Philosophy 14 (2):219-243.
    A perspective in the philosophy of mathematics is developed from a consideration of the strengths and limitations of both logicism and platonism, with an early focus on Frege’s work. Importantly, although many set-theoretic structures may be developed each of which offers limited isomorphism with the system of natural numbers, no one of them may be identified with it. Furthermore, the timeless, ever present nature of mathematical concepts and results itself offers direct access, in the face of a platonist account which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rumfitt on the logic of set theory.Øystein Linnebo - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):826-841.
    ABSTRACTAccording to a famous argument by Dummett, the concept of set is indefinitely extensible, and the logic appropriate for reasoning about the instances of any such concept is intuitionistic, not classical. But Dummett's argument is widely regarded as obscure. This note explains how the final chapter of Rumfitt's important new book advances our understanding of Dummett's argument, but it also points out some problems and unanswered questions. Finally, Rumfitt's reconstruction of Dummett's argument is contrasted with my own preferred alternative.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionism, Meaning Theory and Cognition.Richard Tieszen - 2000 - History and Philosophy of Logic 21 (3):179-194.
    Michael Dummett has interpreted and expounded upon intuitionism under the influence of Wittgensteinian views on language, meaning and cognition. I argue against the application of some of these views to intuitionism and point to shortcomings in Dummett's approach. The alternative I propose makes use of recent, post-Wittgensteinian views in the philosophy of mind, meaning and language. These views are associated with the claim that human cognition exhibits intentionality and with related ideas in philosophical psychology. Intuitionism holds that mathematical constructions are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Supervaluational anti-realism and logic.Stig Alstrup Rasmussen - 1990 - Synthese 84 (1):97 - 138.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Burgess's ‘scientific’ arguments for the existence of mathematical objects.Chihara Charles - 2006 - Philosophia Mathematica 14 (3):318-337.
    This paper addresses John Burgess's answer to the ‘Benacerraf Problem’: How could we come justifiably to believe anything implying that there are numbers, given that it does not make sense to ascribe location or causal powers to numbers? Burgess responds that we should look at how mathematicians come to accept: There are prime numbers greater than 1010 That, according to Burgess, is how one can come justifiably to believe something implying that there are numbers. This paper investigates what lies behind (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Brouwer versus Hilbert: 1907–1928.J. Posy Carl - 1998 - Science in Context 11 (2):291-325.
    The ArgumentL. E. J. Brouwer and David Hubert, two titans of twentieth-century mathematics, clashed dramatically in the 1920s. Though they were both Kantian constructivists, their notoriousGrundlagenstreitcentered on sharp differences about the foundations of mathematics: Brouwer was prepared to revise the content and methods of mathematics (his “Intuitionism” did just that radically), while Hilbert's Program was designed to preserve and constructively secure all of classical mathematics.Hilbert's interests and polemics at the time led to at least three misconstruals of intuitionism, misconstruals which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilary Putnam's Consistency Objection against Wittgenstein's Conventionalism in Mathematics.P. Garavaso - 2013 - Philosophia Mathematica 21 (3):279-296.
    Hilary Putnam first published the consistency objection against Ludwig Wittgenstein’s account of mathematics in 1979. In 1983, Putnam and Benacerraf raised this objection against all conventionalist accounts of mathematics. I discuss the 1979 version and the scenario argument, which supports the key premise of the objection. The wide applicability of this objection is not apparent; I thus raise it against an imaginary axiomatic theory T similar to Peano arithmetic in all relevant aspects. I argue that a conventionalist can explain the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quine's Philosophy of Language and Polish Logic.Eli Dresner - 1999 - History and Philosophy of Logic 20 (2):79-96.
    The Polish logicians' propositional calculi, which consist in a distinct synthesis of the Fregean and Boolean approaches to logic, influenced W. V. Quine's early work in formal logic. This early formal work of Quine's, in turn, can be shown to serve as one of the sources of his holistic conception of natural language.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Crisis in the Foundations of Mathematics.J. Ferreiros - 2008 - In T. Gowers (ed.), Princeton Companion to Mathematics. Princeton University Press.
    A general introduction to the celebrated foundational crisis, discussing how the characteristic traits of modern mathematics (acceptance of the notion of an “arbitrary” function proposed by Dirichlet; wholehearted acceptance of infinite sets and the higher infinite; a preference “to put thoughts in the place of calculations” and to concentrate on “structures” characterized axiomatically; a reliance on “purely existential” methods of proof) provoked extensive polemics and alternative approaches. Going beyond exclusive concentration on the paradoxes, it also discusses the role of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arguments as abstract objects.Paul Simard Smith, Andrei Moldovan & G. C. Goddu - unknown
    In recent discussions concerning the definition of argument, it has been maintained that the word ‘argument’ exhibits the process-product ambiguity, or an act/object ambi-guity. Drawing on literature on lexical ambiguity we argue that ‘argument’ is not ambiguous. The term ‘argument’ refers to an object, not to a speech act. We also examine some of the important implications of our argument by considering the question: what sort of abstract objects are arguments?
    Download  
     
    Export citation  
     
    Bookmark   14 citations