Switch to: References

Add citations

You must login to add citations.
  1. Hilbertian Structuralism and the Frege-Hilbert Controversy†.Fiona T. Doherty - 2019 - Philosophia Mathematica 27 (3):335-361.
    ABSTRACT This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Single-minded Pursuit of Consistency and its Weakness.Walter Carnielli - 2011 - Studia Logica 97 (1):81 - 100.
    I argue that a compulsive seeking for just one sense of consistency is hazardous to rationality, and that observing the subtle distinctions of reasonableness between individual and groups may suggest wider, structuralistic notions of consistency, even relevant to re-assessing Gödei's Second Incompleteness Theorem and to science as a whole.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Jean van Heijenoort’s Contributions to Proof Theory and Its History.Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):411-458.
    Jean van Heijenoort was best known for his editorial work in the history of mathematical logic. I survey his contributions to model-theoretic proof theory, and in particular to the falsifiability tree method. This work of van Heijenoort’s is not widely known, and much of it remains unpublished. A complete list of van Heijenoort’s unpublished writings on tableaux methods and related work in proof theory is appended.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Russell’s Concepts "Name", "Existence" and "Unique Object of Reference" in Light of Modern Physics.Paul Weingartner - 2007 - Russell: The Journal of Bertrand Russell Studies 27 (1):125-143.
    With his theory of descriptions Russell wanted to solve two problems concerning denotation and reference, which are formulated here as Problem I and Problem II. After presenting each problem, we describe the main points of Russell’s solution. We deal with Russell’s concepts of existence and then elaborate his presuppositions concerning the relation of denoting and referring. Next we discuss the presuppositions or principles which underlie Russell’s understanding of the _objects_ of reference. These principles are such that if the objects of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Guest Editor’s Introduction: JvH100. [REVIEW]Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):249-267.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel and philosophical idealism.Charles Parsons - 2010 - Philosophia Mathematica 18 (2):166-192.
    Kurt Gödel made many affirmations of robust realism but also showed serious engagement with the idealist tradition, especially with Leibniz, Kant, and Husserl. The root of this apparently paradoxical attitude is his conviction of the power of reason. The paper explores the question of how Gödel read Kant. His argument that relativity theory supports the idea of the ideality of time is discussed critically, in particular attempting to explain the assertion that science can go beyond the appearances and ‘approach the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Foundations for analysis and proof theory.Wilfried Sieg - 1984 - Synthese 60 (2):159 - 200.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The mathematical philosophy of Charles Parsons. [REVIEW]J. M. B. Moss - 1985 - British Journal for the Philosophy of Science 36 (4):437-457.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations