Switch to: References

Add citations

You must login to add citations.
  1. A computably stable structure with no Scott family of finitary formulas.Peter Cholak, Richard A. Shore & Reed Solomon - 2006 - Archive for Mathematical Logic 45 (5):519-538.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the complexity of categoricity in computable structures.Walker M. White - 2003 - Mathematical Logic Quarterly 49 (6):603.
    We investigate the computational complexity the class of Γ-categorical computable structures. We show that hyperarithmetic categoricity is Π11-complete, while computable categoricity is Π04-hard.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Degrees of categoricity of computable structures.Ekaterina B. Fokina, Iskander Kalimullin & Russell Miller - 2010 - Archive for Mathematical Logic 49 (1):51-67.
    Defining the degree of categoricity of a computable structure ${\mathcal{M}}$ to be the least degree d for which ${\mathcal{M}}$ is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 (n) can be so realized, as can the degree 0 (ω).
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Finite computable dimension does not relativize.Charles F. D. McCoy - 2002 - Archive for Mathematical Logic 41 (4):309-320.
    In many classes of structures, each computable structure has computable dimension 1 or $\omega$. Nevertheless, Goncharov showed that for each $n < \omega$, there exists a computable structure with computable dimension $n$. In this paper we show that, under one natural definition of relativized computable dimension, no computable structure has finite relativized computable dimension greater than 1.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Enumerations in computable structure theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
    We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Prime models of finite computable dimension.Pavel Semukhin - 2009 - Journal of Symbolic Logic 74 (1):336-348.
    We study the following open question in computable model theory: does there exist a structure of computable dimension two which is the prime model of its first-order theory? We construct an example of such a structure by coding a certain family of c.e. sets with exactly two one-to-one computable enumerations into a directed graph. We also show that there are examples of such structures in the classes of undirected graphs, partial orders, lattices, and integral domains.
    Download  
     
    Export citation  
     
    Bookmark  
  • Degree spectra of relations on structures of finite computable dimension.Denis R. Hirschfeldt - 2002 - Annals of Pure and Applied Logic 115 (1-3):233-277.
    We show that for every computably enumerable degree a > 0 there is an intrinsically c.e. relation on the domain of a computable structure of computable dimension 2 whose degree spectrum is { 0 , a } , thus answering a question of Goncharov and Khoussainov 55–57). We also show that this theorem remains true with α -c.e. in place of c.e. for any α∈ω∪{ω} . A modification of the proof of this result similar to what was done in Hirschfeldt (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A computably categorical structure whose expansion by a constant has infinite computable dimension.Denis Hirschfeldt, Bakhadyr Khoussainov & Richard Shore - 2003 - Journal of Symbolic Logic 68 (4):1199-1241.
    Cholak, Goncharov, Khoussainov, and Shore [1] showed that for each k > 0 there is a computably categorical structure whose expansion by a constant has computable dimension k. We show that the same is true with k replaced by ω. Our proof uses a version of Goncharov's method of left and right operations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An introduction to the Scott complexity of countable structures and a survey of recent results.Matthew Harrison-Trainor - 2022 - Bulletin of Symbolic Logic 28 (1):71-103.
    Every countable structure has a sentence of the infinitary logic $\mathcal {L}_{\omega _1 \omega }$ which characterizes that structure up to isomorphism among countable structures. Such a sentence is called a Scott sentence, and can be thought of as a description of the structure. The least complexity of a Scott sentence for a structure can be thought of as a measurement of the complexity of describing the structure. We begin with an introduction to the area, with short and simple proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coding in the automorphism group of a computably categorical structure.Dan Turetsky - 2020 - Journal of Mathematical Logic 20 (3):2050016.
    Using new techniques for controlling the categoricity spectrum of a structure, we construct a structure with degree of categoricity but infinite spectral dimension, answering a question of Bazhenov, Kalimullin and Yamaleev. Using the same techniques, we construct a computably categorical structure of non-computable Scott rank.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Preface.Douglas Cenzer, Valentina Harizanov, David Marker & Carol Wood - 2009 - Archive for Mathematical Logic 48 (1):1-6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable Isomorphisms of Boolean Algebras with Operators.Bakhadyr Khoussainov & Tomasz Kowalski - 2012 - Studia Logica 100 (3):481-496.
    In this paper we investigate computable isomorphisms of Boolean algebras with operators (BAOs). We prove that there are examples of polymodal Boolean algebras with finitely many computable isomorphism types. We provide an example of a polymodal BAO such that it has exactly one computable isomorphism type but whose expansions by a constant have more than one computable isomorphism type. We also prove a general result showing that BAOs are complete with respect to the degree spectra of structures, computable dimensions, expansions (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Degree spectra and computable dimensions in algebraic structures.Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore & Arkadii M. Slinko - 2002 - Annals of Pure and Applied Logic 115 (1-3):71-113.
    Whenever a structure with a particularly interesting computability-theoretic property is found, it is natural to ask whether similar examples can be found within well-known classes of algebraic structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this question is to adapt the original proof to the new setting. However, this can be an unnecessary duplication of effort, and lacks generality. Another method is to code the original structure into a structure in the given (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Linear orders with distinguished function symbol.Douglas Cenzer, Barbara F. Csima & Bakhadyr Khoussainov - 2009 - Archive for Mathematical Logic 48 (1):63-76.
    We consider certain linear orders with a function on them, and discuss for which types of functions the resulting structure is or is not computably categorical. Particularly, we consider computable copies of the rationals with a fixed-point free automorphism, and also ω with a non-decreasing function.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the effective universality of mereological theories.Nikolay Bazhenov & Hsing-Chien Tsai - 2022 - Mathematical Logic Quarterly 68 (1):48-66.
    Mereological theories are based on the binary relation “being a part of”. The systematic investigations of mereology were initiated by Leśniewski. More recent authors (including Simons, Casati and Varzi, Hovda) formulated a series of first‐order mereological axioms. These axioms give rise to a plenitude of theories, which are of great philosophical interest. The paper considers first‐order mereological theories from the point of view of computable (or effective) algebra. Following the approach of Hirschfeldt, Khoussainov, Shore, and Slinko, we isolate two important (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Degree spectra of relations on computable structures.Denis R. Hirschfeldt - 2000 - Bulletin of Symbolic Logic 6 (2):197-212.
    There has been increasing interest over the last few decades in the study of the effective content of Mathematics. One field whose effective content has been the subject of a large body of work, dating back at least to the early 1960s, is model theory. Several different notions of effectiveness of model-theoretic structures have been investigated. This communication is concerned withcomputablestructures, that is, structures with computable domains whose constants, functions, and relations are uniformly computable.In model theory, we identify isomorphic structures. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Finite computable dimension and degrees of categoricity.Barbara F. Csima & Jonathan Stephenson - 2019 - Annals of Pure and Applied Logic 170 (1):58-94.
    Download  
     
    Export citation  
     
    Bookmark   3 citations