Switch to: References

Add citations

You must login to add citations.
  1. On modal systems having arithmetical interpretations.Arnon Avron - 1984 - Journal of Symbolic Logic 49 (3):935-942.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Faith & falsity.Albert Visser - 2004 - Annals of Pure and Applied Logic 131 (1-3):103-131.
    A theory T is trustworthy iff, whenever a theory U is interpretable in T, then it is faithfully interpretable. In this paper we give a characterization of trustworthiness. We provide a simple proof of Friedman’s Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Π20.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Isomorphisms of Diagonalizable Algebras.V. Yu Shavrukov - 1997 - Theoria 63 (3):210-221.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reference in arithmetic.Lavinia Picollo - 2018 - Review of Symbolic Logic 11 (3):573-603.
    Self-reference has played a prominent role in the development of metamathematics in the past century, starting with Gödel’s first incompleteness theorem. Given the nature of this and other results in the area, the informal understanding of self-reference in arithmetic has sufficed so far. Recently, however, it has been argued that for other related issues in metamathematics and philosophical logic a precise notion of self-reference and, more generally, reference is actually required. These notions have been so far elusive and are surrounded (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Completeness Result for Fixed‐Point Algebras.Franco Montagna - 1984 - Mathematical Logic Quarterly 30 (32-34):525-532.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Observations on the FGH Theorem.Taishi Kurahashi - 2023 - Studia Logica 111 (5):749-778.
    We investigate the Friedman–Goldfarb–Harrington theorem from two perspectives. Firstly, in the frameworks of classical and modal propositional logics, we study the forms of sentences whose existence is guaranteed by the FGH theorem. Secondly, we prove some variations of the FGH theorem with respect to Rosser provability predicates.
    Download  
     
    Export citation  
     
    Bookmark  
  • Illusory models of peano arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Symbolic Logic 81 (3):1163-1175.
    By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a modelMof PA. We say a modelMof PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane ifM⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane modelNof PA. We firstly show thatMis heterodox if and only if it is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Scope of Gödel’s First Incompleteness Theorem.Bernd Buldt - 2014 - Logica Universalis 8 (3-4):499-552.
    Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hierarchical Incompleteness Results for Arithmetically Definable Extensions of Fragments of Arithmetic.Rasmus Blanck - 2021 - Review of Symbolic Logic 14 (3):624-644.
    There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “$\mathrm {T}$is$\Sigma _n$-ill” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation