Switch to: References

Citations of:

Foundations of mathematical logic

New York: Dover Publications (1963)

Add citations

You must login to add citations.
  1. Subformula and separation properties in natural deduction via small Kripke models: Subformula and separation properties.Peter Milne - 2010 - Review of Symbolic Logic 3 (2):175-227.
    Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid to which properties of theories result in the presence of which rules of inference, and to restrictions on the sets of formulas to which the rules may be employed, restrictions (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Language Adequacy.Urszula Wybraniec-Skardowska - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):257-292.
    The paper concentrates on the problem of adequate reflection of fragments of reality via expressions of language and inter-subjective knowledge about these fragments, called here, in brief, language adequacy. This problem is formulated in several aspects, the most being: the compatibility of language syntax with its bi-level semantics: intensional and extensional. In this paper, various aspects of language adequacy find their logical explication on the ground of the formal-logical theory T of any categorial language L generated by the so-called classical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • ¿qué Tan Matemática Es La Lógica Matemática?Axel Barceló Aspeitia - 2003 - Dianoia 48 (51):3-28.
    La lógica matemática es matemática en cuanto que usa herramientas matemáticas. En este sentido, la lógica matemática es matemática en el mismo sentido que lo es, digamos, la mecánica newtoniana. En ambos casos, el método es matemático, pero las ciencias mismas no lo son, pues su objeto de estudio pertenece a una realidad objetiva e independiente. En particular, las herramientas matemáticas que usa la lógica simbólica contemporánea —tanto en su simbolismo como en su cálculo— se crearon originalmente para el desarrollo (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On subsystems of the system J1 of Arruda and Da Costa.Igor Urbas - 1990 - Mathematical Logic Quarterly 36 (2):95-106.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Wittgenstein & Paraconsistência.João Marcos - 2010 - Principia: An International Journal of Epistemology 14 (1):135-73.
    In classical logic, a contradiction allows one to derive every other sentence of the underlying language; paraconsistent logics came relatively recently to subvert this explosive principle, by allowing for the subsistence of contradictory yet non-trivial theories. Therefore our surprise to find Wittgenstein, already at the 1930s, in comments and lectures delivered on the foundations of mathematics, as well as in other writings, counseling a certain tolerance on what concerns the presence of contradictions in a mathematical system. ‘Contradiction. Why just this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Expansions of Semi-Heyting Algebras I: Discriminator Varieties.H. P. Sankappanavar - 2011 - Studia Logica 98 (1-2):27-81.
    This paper is a contribution toward developing a theory of expansions of semi-Heyting algebras. It grew out of an attempt to settle a conjecture we had made in 1987. Firstly, we unify and extend strikingly similar results of [ 48 ] and [ 50 ] to the (new) equational class DHMSH of dually hemimorphic semi-Heyting algebras, or to its subvariety BDQDSH of blended dual quasi-De Morgan semi-Heyting algebras, thus settling the conjecture. Secondly, we give a criterion for a unary expansion (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Brief History of Natural Deduction.Francis Jeffry Pelletier - 1999 - History and Philosophy of Logic 20 (1):1-31.
    Natural deduction is the type of logic most familiar to current philosophers, and indeed is all that many modern philosophers know about logic. Yet natural deduction is a fairly recent innovation in logic, dating from Gentzen and Jaśkowski in 1934. This article traces the development of natural deduction from the view that these founders embraced to the widespread acceptance of the method in the 1960s. I focus especially on the different choices made by writers of elementary textbooks—the standard conduits of (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Combinatory logic.Katalin Bimbó - 2009 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Notes on the art of logic.Nuel Belnap - manuscript
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophical reflections on the foundations of mathematics.Jocelyne Couture & Joachim Lambek - 1991 - Erkenntnis 34 (2):187 - 209.
    This article was written jointly by a philosopher and a mathematician. It has two aims: to acquaint mathematicians with some of the philosophical questions at the foundations of their subject and to familiarize philosophers with some of the answers to these questions which have recently been obtained by mathematicians. In particular, we argue that, if these recent findings are borne in mind, four different basic philosophical positions, logicism, formalism, platonism and intuitionism, if stated with some moderation, are in fact reconcilable, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relevant analytic tableaux.Michael A. McRobbie & Nuel D. Belnap - 1979 - Studia Logica 38 (2):187 - 200.
    Tableau formulations are given for the relevance logics E (Entailment), R (Relevant implication) and RM (Mingle). Proofs of equivalence to modus-ponens-based formulations are vialeft-handed Gentzen sequenzen-kalküle. The tableau formulations depend on a detailed analysis of the structure of tableau rules, leading to certain global requirements. Relevance is caught by the requirement that each node must be used; modality is caught by the requirement that only certain rules can cross a barrier. Open problems are discussed.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The revival of rejective negation.Lloyd Humberstone - 2000 - Journal of Philosophical Logic 29 (4):331-381.
    Whether assent ("acceptance") and dissent ("rejection") are thought of as speech acts or as propositional attitudes, the leading idea of rejectivism is that a grasp of the distinction between them is prior to our understanding of negation as a sentence operator, this operator then being explicable as applying to A to yield something assent to which is tantamount to dissent from A. Widely thought to have been refuted by an argument of Frege's, rejectivism has undergone something of a revival in (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Types of I -free hereditary right maximal terms.Katalin Bimbó - 2005 - Journal of Philosophical Logic 34 (5/6):607 - 620.
    The implicational fragment of the relevance logic "ticket entailment" is closely related to the so-called hereditary right maximal terms. I prove that the terms that need to be considered as inhabitants of the types which are theorems of $T_\rightarrow$ are in normal form and built in all but one casefrom B, B' and W only. As a tool in the proof ordered term rewriting systems are introduced. Based on the main theorem I define $FIT_\rightarrow$ - a Fitch-style calculus (related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paraconsistent modal logics.Umberto Rivieccio - 2011 - Electronic Notes in Theoretical Computer Science 278:173-186.
    We introduce a modal expansion of paraconsistent Nelson logic that is also as a generalization of the Belnapian modal logic recently introduced by Odintsov and Wansing. We prove algebraic completeness theorems for both logics, defining and axiomatizing the corresponding algebraic semantics. We provide a representation for these algebras in terms of twiststructures, generalizing a known result on the representation of the algebraic counterpart of paraconsistent Nelson logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • El Tractatus al rescate de Principia Mathematica: Ramsey y los fundamentos logicistas de las matemáticas.Emilio Méndez Pinto - 2022 - Critica 54 (161):43-69.
    Mi objetivo es discutir las principales dificultades que Frank P. Ramsey encontró en Principia Mathematica y la solución que, vía el Tractatus Logico-Philosophicus, propuso al respecto. Sostengo que las principales dificultades que Ramsey encontró en Principia Mathematica están, todas, relacionadas con que Russell y Whitehead desatendieron la forma lógica de las proposiciones matemáticas, las cuales, según Ramsey, deben ser tautológicas.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • History and Philosophy of Constructive Type Theory.Giovanni Sommaruga - 2000 - Dordrecht, Netherland: Springer.
    A comprehensive survey of Martin-Löf's constructive type theory, considerable parts of which have only been presented by Martin-Löf in lecture form or as part of conference talks. Sommaruga surveys the prehistory of type theory and its highly complex development through eight different stages from 1970 to 1995. He also provides a systematic presentation of the latest version of the theory, as offered by Martin-Löf at Leiden University in Fall 1993. This presentation gives a fuller and updated account of the system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Refuting Tarski and Gödel with a Sound Deductive Formalism.P. Olcott - manuscript
    The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic value of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide the valid deductive inference. Sound deductive conclusions are the result of these finite string transformation rules.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof that Wittgenstein is correct about Gödel.P. Olcott - manuscript
    The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic property of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide valid the deductive inference. Conclusions of sound arguments are derived from truth preserving finite string transformations applied to true premises.
    Download  
     
    Export citation  
     
    Bookmark  
  • Deductively Sound Formal Proofs.P. Olcott - manuscript
    Could the intersection of [formal proofs of mathematical logic] and [sound deductive inference] specify formal systems having [deductively sound formal proofs of mathematical logic]? All that we have to do to provide [deductively sound formal proofs of mathematical logic] is select the subset of conventional [formal proofs of mathematical logic] having true premises and now we have [deductively sound formal proofs of mathematical logic].
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Philosophy of Logic – Reexamining the Formalized Notion of Truth.P. Olcott - manuscript
    Because formal systems of symbolic logic inherently express and represent the deductive inference model formal proofs to theorem consequences can be understood to represent sound deductive inference to true conclusions without any need for other representations such as model theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Harmony of Identity.Ansten Klev - 2019 - Journal of Philosophical Logic 48 (5):867-884.
    The standard natural deduction rules for the identity predicate have seemed to some not to be harmonious. Stephen Read has suggested an alternative introduction rule that restores harmony but presupposes second-order logic. Here it will be shown that the standard rules are in fact harmonious. To this end, natural deduction will be enriched with a theory of definitional identity. This leads to a novel conception of canonical derivation, on the basis of which the identity elimination rule can be justified in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • „Kauza Afthonios“: Ilustrácia k otázke správneho riešenia antických paradoxov.Vladimir Marko - 2014 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 1 (20):88-103.
    The article deals with the question of correct reconstruction of and solutions to the ancient paradoxes. Analyzing one contemporary example of a reconstruction of the so-called Crocodile Paradox, taken from Sorensen’s A Brief History of Paradox, the author shows how the original pattern of paradox could have been incorrectly transformed in its meaning by overlooking its adequate historical background. Sorensen’s quoting of Aphthonius, as the author of a certain solution to the paradox, seems to be a systematic failure since the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Towards a Formal Ontology of Information. Selected Ideas of K. Turek.Roman Krzanowski - 2016 - Zagadnienia Filozoficzne W Nauce 61:23-52.
    There are many ontologies of the world or of specific phenomena such as time, matter, space, and quantum mechanics1. However, ontologies of information are rather rare. One of the reasons behind this is that information is most frequently associated with communication and computing, and not with ‘the furniture of the world’. But what would be the nature of an ontology of information? For it to be of significant import it should be amenable to formalization in a logico-grammatical formalism. A candidate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Negative Equivalence of Extensions of Minimal Logic.Sergei P. Odintsov - 2004 - Studia Logica 78 (3):417-442.
    Two logics L1 and L2 are negatively equivalent if for any set of formulas X and any negated formula ¬, ¬ can be deduced from the set of hypotheses X in L1 if and only if it can be done in L2. This article is devoted to the investigation of negative equivalence relation in the class of extensions of minimal logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gentzen and Jaśkowski Natural Deduction: Fundamentally Similar but Importantly Different.Allen P. Hazen & Francis Jeffry Pelletier - 2014 - Studia Logica 102 (6):1103-1142.
    Gentzen’s and Jaśkowski’s formulations of natural deduction are logically equivalent in the normal sense of those words. However, Gentzen’s formulation more straightforwardly lends itself both to a normalization theorem and to a theory of “meaning” for connectives . The present paper investigates cases where Jaskowski’s formulation seems better suited. These cases range from the phenomenology and epistemology of proof construction to the ways to incorporate novel logical connectives into the language. We close with a demonstration of this latter aspect by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Relevant Robinson's arithmetic.J. Michael Dunn - 1979 - Studia Logica 38 (4):407 - 418.
    In this paper two different formulations of Robinson's arithmetic based on relevant logic are examined. The formulation based on the natural numbers (including zero) is shown to collapse into classical Robinson's arithmetic, whereas the one based on the positive integers (excluding zero) is shown not to similarly collapse. Relations of these two formulations to R. K. Meyer's system R# of relevant Peano arithmetic are examined, and some remarks are made about the role of constant functions (e.g., multiplication by zero) in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On sequence-conclusion natural deduction systems.Branislav R. Boričić - 1985 - Journal of Philosophical Logic 14 (4):359 - 377.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)The Cogito Paradox.Arnold Cusmariu - forthcoming - Symposion. Theoretical and Applied Inquiries in Philosophy and Social Sciences.
    Arnold Cusmariu ABSTRACT: The Cogito formulation in Discourse on Method attributes properties to one conceptual category that belong to another. Correcting the error ends up defeating Descartes’ response to skepticism. His own creation, the Evil Genius, is to blame. Download PDF.
    Download  
     
    Export citation  
     
    Bookmark  
  • Negation in the language of theology – some issues.Adam Olszewski - 2018 - Philosophical Problems in Science 65:87-107.
    The paper consists of two parts. In the first one I present some general remarks regarding the history of negation and attempt to answer the philosophical question concerning the essence of negation. In the second part I resume the theological teaching on the degrees of certainty and point to five forms of negation – known from other areas of research -- as applied in the framework of theological investigations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Neglect of Epistemic Considerations in Logic: The Case of Epistemic Assumptions.Göran Sundholm - 2019 - Topoi 38 (3):551-559.
    The two different layers of logical theory—epistemological and ontological—are considered and explained. Special attention is given to epistemic assumptions of the kind that a judgement is granted as known, and their role in validating rules of inference, namely to aid the inferential preservation of epistemic matters from premise judgements to conclusion judgement, while ordinary Natural Deduction assumptions serve to establish the holding of consequence from antecedent propositions to succedent proposition.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Variations on da Costa C systems and dual-intuitionistic logics I. analyses of cω and CCω.Richard Sylvan - 1990 - Studia Logica 49 (1):47-65.
    Da Costa's C systems are surveyed and motivated, and significant failings of the systems are indicated. Variations are then made on these systems in an attempt to surmount their defects and limitations. The main system to emerge from this effort, system CC , is investigated in some detail, and dual-intuitionistic semantical analyses are developed for it and surrounding systems. These semantics are then adapted for the original C systems, first in a rather unilluminating relational fashion, subsequently in a more illuminating (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Normalization and excluded middle. I.Jonathan P. Seldin - 1989 - Studia Logica 48 (2):193 - 217.
    The usual rule used to obtain natural deduction formulations of classical logic from intuitionistic logic, namely.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • More triviality.Richard Bradley - 1999 - Journal of Philosophical Logic 28 (2):129-139.
    This paper uses the framework of Popper and Miller's work on axiom systems for conditional probabilities to explore Adams' thesis concerning the probabilities of conditionals. It is shown that even very weak axiom systems have only a very restricted set of models satisfying a natural generalisation of Adams' thesis, thereby casting severe doubt on the possibility of developing a non-Boolean semantics for conditionals consistent with it.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Models for normal intuitionistic modal logics.Milan Božić & Kosta Došen - 1984 - Studia Logica 43 (3):217 - 245.
    Kripke-style models with two accessibility relations, one intuitionistic and the other modal, are given for analogues of the modal systemK based on Heyting's prepositional logic. It is shown that these two relations can combine with each other in various ways. Soundness and completeness are proved for systems with only the necessity operator, or only the possibility operator, or both. Embeddings in modal systems with several modal operators, based on classical propositional logic, are also considered. This paper lays the ground for (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • On Relative Principal Congruences in Term Quasivarieties.Hernán Javier San Martín - 2022 - Studia Logica 110 (6):1465-1491.
    Let \({\mathcal {K}}\) be a quasivariety. We say that \({\mathcal {K}}\) is a term quasivariety if there exist an operation of arity zero _e_ and a family of binary terms \(\{t_i\}_{i\in I}\) such that for every \(A \in {\mathcal {K}}\), \(\theta \) a \({\mathcal {K}}\) -congruence of _A_ and \(a,b\in A\) the following condition is satisfied: \((a,b)\in \theta \) if and only if \((t_{i}(a,b),e) \in \theta \) for every \(i\in I\). In this paper we study term quasivarieties. For every \(A\in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Subminimal Negation on the Australian Plan.Selcuk Kaan Tabakci - 2022 - Journal of Philosophical Logic 51 (5):1119-1139.
    Frame semantics for negation on the Australian Plan accommodates many different negations, but it falls short on accommodating subminimal negation when the language contains conjunction and disjunction. In this paper, I will present a multi-relational frame semantics –multi-incompatibility frame semantics– that can accommodate subminimal negation. I will first argue that multi-incompatibility frames are in accordance with the philosophical motivations behind negation on the Australian Plan, namely its modal and exclusion-expressing nature. Then, I will prove the soundness and completeness results of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Structural Features of the Implication Fragment of Frege’s Grundgesetze.Andrew Tedder - 2017 - Journal of Philosophical Logic 46 (4):443-456.
    We set out the implication fragment of Frege’s Grundgesetze, clarifying the implication rules and showing that this system extends Absolute Implication, or the implication fragment of Intuitionist logic. We set out a sequent calculus which naturally captures Frege’s implication proofs, and draw particular attention to the Cut-like features of his Hypothetical Syllogism rule.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Alternative Normalization of the Implicative Fragment of Classical Logic.Branislav Boričić & Mirjana Ilić - 2015 - Studia Logica 103 (2):413-446.
    A normalizable natural deduction formulation, with subformula property, of the implicative fragment of classical logic is presented. A traditional notion of normal deduction is adapted and the corresponding weak normalization theorem is proved. An embedding of the classical logic into the intuitionistic logic, restricted on propositional implicational language, is described as well. We believe that this multiple-conclusion approach places the classical logic in the same plane with the intuitionistic logic, from the proof-theoretical viewpoint.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Propositional quantifiers.Dorothy L. Grover - 1972 - Journal of Philosophical Logic 1 (2):111 - 136.
    In discussing propositional quantifiers we have considered two kinds of variables: variables occupying the argument places of connectives, and variables occupying the argument places of predicates.We began with languages which contained the first kind of variable, i.e., variables taking sentences as substituends. Our first point was that there appear to be no sentences in English that serve as adequate readings of formulas containing propositional quantifiers. Then we showed how a certain natural and illuminating extension of English by prosentences did provide (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On łukasiewicz's four-valued modal logic.Josep Maria Font & Petr Hájek - 2002 - Studia Logica 70 (2):157-182.
    ukasiewicz''s four-valued modal logic is surveyed and analyzed, together with ukasiewicz''s motivations to develop it. A faithful interpretation of it in classical (non-modal) two-valued logic is presented, and some consequences are drawn concerning its classification and its algebraic behaviour. Some counter-intuitive aspects of this logic are discussed in the light of the presented results, ukasiewicz''s own texts, and related literature.
    Download  
     
    Export citation  
     
    Bookmark   19 citations