Switch to: References

Add citations

You must login to add citations.
  1. Number Concepts: An Interdisciplinary Inquiry.Richard Samuels & Eric Snyder - 2024 - Cambridge University Press.
    This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies could potentially shed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Situated Counting.Peter Gärdenfors & Paula Quinon - 2020 - Review of Philosophy and Psychology 12 (4):721-744.
    We present a model of how counting is learned based on the ability to perform a series of specific steps. The steps require conceptual knowledge of three components: numerosity as a property of collections; numerals; and one-to-one mappings between numerals and collections. We argue that establishing one-to-one mappings is the central feature of counting. In the literature, the so-called cardinality principle has been in focus when studying the development of counting. We submit that identifying the procedural ability to count with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How Do We Semantically Individuate Natural Numbers?†.Stefan Buijsman - forthcoming - Philosophia Mathematica.
    ABSTRACT How do non-experts single out numbers for reference? Linnebo has argued that they do so using a criterion of identity based on the ordinal properties of numerals. Neo-logicists, on the other hand, claim that cardinal properties are the basis of individuation, when they invoke Hume’s Principle. I discuss empirical data from cognitive science and linguistics to answer how non-experts individuate numbers better in practice. I use those findings to develop an alternative account that mixes ordinal and cardinal properties to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bootstrapping of integer concepts: the stronger deviant-interpretation challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Counting to Infinity: Does Learning the Syntax of the Count List Predict Knowledge That Numbers Are Infinite?Junyi Chu, Pierina Cheung, Rose M. Schneider, Jessica Sullivan & David Barner - 2020 - Cognitive Science 44 (8):e12875.
    By around the age of 5½, many children in the United States judge that numbers never end, and that it is always possible to add 1 to a set. These same children also generally perform well when asked to label the quantity of a set after one object is added (e.g., judging that a set labeled “five” should now be “six”). These findings suggest that children have implicit knowledge of the “successor function”: Every natural number, n, has a successor, n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is thirty-two three tens and two ones? The embedded structure of cardinal numbers.Diego Guerrero, Jihyun Hwang, Brynn Boutin, Tom Roeper & Joonkoo Park - 2020 - Cognition 203 (C):104331.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Two roads to the successor axiom.Stefan Buijsman - 2020 - Synthese 197 (3):1241-1261.
    Most accounts of our knowledge of the successor axiom claim that this is based on the procedure of adding one. While they usually don’t claim to provide an account of how children actually acquire this knowledge, one may well think that this is how they get that knowledge. I argue that when we look at children’s responses in interviews, the time when they learn the successor axiom and the intermediate learning stages they find themselves in, that there is an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Testimony and Children’s Acquisition of Number Concepts.Helen De Cruz - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 172-186.
    An enduring puzzle in philosophy and developmental psychology is how young children acquire number concepts, in particular the concept of natural number. Most solutions to this problem conceptualize young learners as lone mathematicians who individually reconstruct the successor function and other sophisticated mathematical ideas. In this chapter, I argue for a crucial role of testimony in children’s acquisition of number concepts, both in the transfer of propositional knowledge (e.g., the cardinality concept), and in knowledge-how (e.g., the counting routine).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can Bootstrapping Explain Concept Learning?Jacob Beck - 2017 - Cognition 158 (C):110–121.
    Susan Carey's account of Quinean bootstrapping has been heavily criticized. While it purports to explain how important new concepts are learned, many commentators complain that it is unclear just what bootstrapping is supposed to be or how it is supposed to work. Others allege that bootstrapping falls prey to the circularity challenge: it cannot explain how new concepts are learned without presupposing that learners already have those very concepts. Drawing on discussions of concept learning from the philosophical literature, this article (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Learning to represent exact numbers.Barbara W. Sarnecka - 2015 - Synthese 198 (Suppl 5):1001-1018.
    This article focuses on how young children acquire concepts for exact, cardinal numbers. I believe that exact numbers are a conceptual structure that was invented by people, and that most children acquire gradually, over a period of months or years during early childhood. This article reviews studies that explore children’s number knowledge at various points during this acquisition process. Most of these studies were done in my own lab, and assume the theoretical framework proposed by Carey. In this framework, the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Children’s mappings between number words and the approximate number system.Darko Odic, Mathieu Le Corre & Justin Halberda - 2015 - Cognition 138 (C):102-121.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Parallel Distributed Processing at 25: Further Explorations in the Microstructure of Cognition.Timothy T. Rogers & James L. McClelland - 2014 - Cognitive Science 38 (6):1024-1077.
    This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP framework, the key issues the framework has addressed, and the debates the framework has spawned, and presents viewpoints on the current status of these issues. The articles focus on both historical roots and contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Enculturation and the historical origins of number words and concepts.César Frederico dos Santos - 2021 - Synthese 199 (3-4):9257-9287.
    In the literature on enculturation—the thesis according to which higher cognitive capacities result from transformations in the brain driven by culture—numerical cognition is often cited as an example. A consequence of the enculturation account for numerical cognition is that individuals cannot acquire numerical competence if a symbolic system for numbers is not available in their cultural environment. This poses a problem for the explanation of the historical origins of numerical concepts and symbols. When a numeral system had not been created (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Idea of an Exact Number: Children's Understanding of Cardinality and Equinumerosity.Barbara W. Sarnecka & Charles E. Wright - 2013 - Cognitive Science 37 (8):1493-1506.
    Understanding what numbers are means knowing several things. It means knowing how counting relates to numbers (called the cardinal principle or cardinality); it means knowing that each number is generated by adding one to the previous number (called the successor function or succession), and it means knowing that all and only sets whose members can be placed in one-to-one correspondence have the same number of items (called exact equality or equinumerosity). A previous study (Sarnecka & Carey, 2008) linked children's understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Counting and the ontogenetic origins of exact equality.Rose M. Schneider, Erik Brockbank, Roman Feiman & David Barner - 2022 - Cognition 218 (C):104952.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An empirically informed account of numbers as reifications.César Frederico dos Santos - 2023 - Theoria 89 (6):783-799.
    The field of numerical cognition provides a fairly clear picture of the processes through which we learn basic arithmetical facts. This scientific picture, however, is rarely taken as providing a response to a much‐debated philosophical question, namely, the question of how we obtain number knowledge, since numbers are usually thought to be abstract entities located outside of space and time. In this paper, I take the scientific evidence on how we learn arithmetic as providing a response to the philosophical question (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing exact arithmetic abilities before formal schooling.Chi-Chuan Chen, Selim Jang, Manuela Piazza & Daniel C. Hyde - 2023 - Cognition 238 (C):105481.
    Download  
     
    Export citation  
     
    Bookmark  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Children's understanding of the abstract logic of counting.Colin Jacobs, Madison Flowers & Julian Jara-Ettinger - 2021 - Cognition 214 (C):104790.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A “sense of magnitude” requires a new alternative for learning numerical symbols.Delphine Sasanguie & Bert Reynvoet - 2017 - Behavioral and Brain Sciences 40.
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessing the knower-level framework: How reliable is the Give-a-Number task?Elisabeth Marchand, Jarrett T. Lovelett, Kelly Kendro & David Barner - 2022 - Cognition 222 (C):104998.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cognitive Structuralism: Explaining the Regularity of the Natural Numbers Progression.Paula Quinon - 2022 - Review of Philosophy and Psychology 13 (1):127-149.
    According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize (i.e., to assess anexactquantity of the elements in a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Challenge of Modeling the Acquisition of Mathematical Concepts.Alberto Testolin - 2020 - Frontiers in Human Neuroscience 14:511878.
    As a full-blown research topic, numerical cognition is investigated by a variety of disciplines including cognitive science, developmental and educational psychology, linguistics, anthropology and, more recently, biology and neuroscience. However, despite the great progress achieved by such a broad and diversified scientific inquiry, we are still lacking a comprehensive theory that could explain how numerical concepts are learned by the human brain. In this perspective, I argue that computer simulation should have a primary role in filling this gap because it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spatial and Verbal Routes to Number Comparison in Young Children.Francesco Sella, Daniela Lucangeli & Marco Zorzi - 2018 - Frontiers in Psychology 9.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The plural counts: Inconsistent grammatical number hinders numerical development in preschoolers — A cross-linguistic study.Maciej Haman, Katarzyna Lipowska, Mojtaba Soltanlou, Krzysztof Cipora, Frank Domahs & Hans-Christoph Nuerk - 2023 - Cognition 235 (C):105383.
    Download  
     
    Export citation  
     
    Bookmark  
  • Can statistical learning bootstrap the integers?Lance J. Rips, Jennifer Asmuth & Amber Bloomfield - 2013 - Cognition 128 (3):320-330.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Do analog number representations underlie the meanings of young children’s verbal numerals?Susan Carey, Anna Shusterman, Paul Haward & Rebecca Distefano - 2017 - Cognition 168 (C):243-255.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The knowledge of the preceding number reveals a mature understanding of the number sequence.Francesco Sella & Daniela Lucangeli - 2020 - Cognition 194 (C):104104.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The cerebral, extra-cerebral bodily, and socio-cultural dimensions of enculturated arithmetical cognition.Regina E. Fabry - 2020 - Synthese 197 (9):3685-3720.
    Arithmetical cognition is the result of enculturation. On a personal level of analysis, enculturation is a process of structured cultural learning that leads to the acquisition of evolutionarily recent, socio-culturally shaped arithmetical practices. On a sub-personal level, enculturation is realized by learning driven plasticity and learning driven bodily adaptability, which leads to the emergence of new neural circuitry and bodily action patterns. While learning driven plasticity in the case of arithmetical practices is not consistent with modularist theories of mental architecture, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantity evaluations in Yudja: judgements, language and cultural practice.Suzi Lima & Susan Rothstein - 2020 - Synthese 197 (9):3851-3873.
    In this paper we explore the interpretation of quantity expressions in Yudja, an indigenous language spoken in the Amazonian basin, showing that while the language allows reference to exact cardinalities, it does not generally allow reference to exact measure values. It does, however, allow non-exact comparison along continuous dimensions. We use this data to argue that the grammar of exact measurement is distinct from a grammar allowing the expression of exact cardinalities, and that the grammar of counting and the grammar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Expert attention: Attentional allocation depends on the differential development of multisensory number representations.Pawel J. Matusz, Rebecca Merkley, Michelle Faure & Gaia Scerif - 2019 - Cognition 186 (C):171-177.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Preschool children use space, rather than counting, to infer the numerical magnitude of digits: Evidence for a spatial mapping principle.Francesco Sella, Ilaria Berteletti, Daniela Lucangeli & Marco Zorzi - 2017 - Cognition 158 (C):56-67.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering.Elizabet Spaepen, Elizabeth A. Gunderson, Dominic Gibson, Susan Goldin-Meadow & Susan C. Levine - 2018 - Cognition 180 (C):59-81.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Contrast and entailment: Abstract logical relations constrain how 2- and 3-year-old children interpret unknown numbers.Roman Feiman, Joshua K. Hartshorne & David Barner - 2019 - Cognition 183 (C):192-207.
    Do children understand how different numbers are related before they associate them with specific cardinalities? We explored how children rely on two abstract relations – contrast and entailment – to reason about the meanings of ‘unknown’ number words. Previous studies argue that, because children give variable amounts when asked to give an unknown number, all unknown numbers begin with an existential meaning akin to some. In Experiment 1, we tested an alternative hypothesis, that because numbers belong to a scale of (...)
    Download  
     
    Export citation  
     
    Bookmark