Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Categorical Interpretation of the Intuitionistic, Typed, First Order Logic with Hilbert’s $${\varepsilon}$$ ε -Terms.Fabio Pasquali - 2016 - Logica Universalis 10 (4):407-418.
    We introduce a typed version of the intuitionistic epsilon calculus. We give a categorical semantics of it introducing a class of categories which we call \-categories. We compare our results with earlier ones of Bell :323–337, 1993).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the connection between Nonstandard Analysis and Constructive Analysis.Sam Sanders - forthcoming - Logique Et Analyse.
    Constructive Analysis and Nonstandard Analysis are often characterized as completely antipodal approaches to analysis. We discuss the possibility of capturing the central notion of Constructive Analysis (i.e. algorithm, finite procedure or explicit construction) by a simple concept inside Nonstandard Analysis. To this end, we introduce Omega-invariance and argue that it partially satisfies our goal. Our results provide a dual approach to Erik Palmgren's development of Nonstandard Analysis inside constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Types, Sets and Categories.John L. Bell - unknown
    This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The axiom of choice.John L. Bell - 2008 - Stanford Encyclopedia of Philosophy.
    The principle of set theory known as the Axiom of Choice has been hailed as “probably the most interesting and, in spite of its late appearance, the most discussed axiom of mathematics, second only to Euclid's axiom of parallels which was introduced more than two thousand years ago” (Fraenkel, Bar-Hillel & Levy 1973, §II.4). The fulsomeness of this description might lead those unfamiliar with the axiom to expect it to be as startling as, say, the Principle of the Constancy of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Does category theory provide a framework for mathematical structuralism?Geoffrey Hellman - 2003 - Philosophia Mathematica 11 (2):129-157.
    Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis-a-vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell's many-topoi view and modal-structuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Predicative Classes and Strict Potentialism.Øystein Linnebo & Stewart Shapiro - forthcoming - Philosophia Mathematica:nkae020.
    While sets are combinatorial collections, defined by their elements, classes are logical collections, defined by their membership conditions. We develop, in a potentialist setting, a predicative approach to (logical) classes of (combinatorial) sets. Some reasons emerge to adopt a stricter form of potentialism, which insists, not only that each object is generated at some stage of an incompletable process, but also that each truth is “made true” at some such stage. The natural logic of this strict form of potentialism is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse formalism 16.Sam Sanders - 2020 - Synthese 197 (2):497-544.
    In his remarkable paper Formalism 64, Robinson defends his eponymous position concerning the foundations of mathematics, as follows:Any mention of infinite totalities is literally meaningless.We should act as if infinite totalities really existed. Being the originator of Nonstandard Analysis, it stands to reason that Robinson would have often been faced with the opposing position that ‘some infinite totalities are more meaningful than others’, the textbook example being that of infinitesimals. For instance, Bishop and Connes have made such claims regarding infinitesimals, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Characterizing the interpretation of set theory in Martin-Löf type theory.Michael Rathjen & Sergei Tupailo - 2006 - Annals of Pure and Applied Logic 141 (3):442-471.
    Constructive Zermelo–Fraenkel set theory, CZF, can be interpreted in Martin-Löf type theory via the so-called propositions-as-types interpretation. However, this interpretation validates more than what is provable in CZF. We now ask ourselves: is there a reasonably simple axiomatization of the set-theoretic formulae validated in Martin-Löf type theory? The answer is yes for a large collection of statements called the mathematical formulae. The validated mathematical formulae can be axiomatized by suitable forms of the axiom of choice.The paper builds on a self-interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structure in mathematics and logic: A categorical perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
    A precise notion of ‘mathematical structure’ other than that given by model theory may prove fruitful in the philosophy of mathematics. It is shown how the language and methods of category theory provide such a notion, having developed out of a structural approach in modern mathematical practice. As an example, it is then shown how the categorical notion of a topos provides a characterization of ‘logical structure’, and an alternative to the Pregean approach to logic which is continuous with the (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Immanent Reasoning or Equality in Action: A Plaidoyer for the Play Level.Nicolas Clerbout, Ansten Klev, Zoe McConaughey & Shahid Rahman - 2018 - Cham, Switzerland: Springer Verlag.
    This monograph proposes a new way of implementing interaction in logic. It also provides an elementary introduction to Constructive Type Theory. The authors equally emphasize basic ideas and finer technical details. In addition, many worked out exercises and examples will help readers to better understand the concepts under discussion. One of the chief ideas animating this study is that the dialogical understanding of definitional equality and its execution provide both a simple and a direct way of implementing the CTT approach (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Infinite Populations, Choice and Determinacy.Tadeusz Litak - 2018 - Studia Logica 106 (5):969-999.
    This paper criticizes non-constructive uses of set theory in formal economics. The main focus is on results on preference aggregation and Arrow’s theorem for infinite electorates, but the present analysis would apply as well, e.g., to analogous results in intergenerational social choice. To separate justified and unjustified uses of infinite populations in social choice, I suggest a principle which may be called the Hildenbrand criterion and argue that results based on unrestricted axiom of choice do not meet this criterion. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Constructive mathematics.Douglas Bridges - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • All the mathematics in the world: logical validity and classical set theory.David Charles McCarty - 2017 - Philosophical Problems in Science 63:5-29.
    A recognizable topological model construction shows that any consistent principles of classical set theory, including the validity of the law of the excluded third, together with a standard class theory, do not suffice to demonstrate the general validity of the law of the excluded third. This result calls into question the classical mathematician's ability to offer solid justifications for the logical principles he or she favors.
    Download  
     
    Export citation  
     
    Bookmark  
  • Skolem's paradox and constructivism.Charles McCarty & Neil Tennant - 1987 - Journal of Philosophical Logic 16 (2):165 - 202.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Set theory influenced logic, both through its semantics, by expanding the possible models of various theories and by the formal definition of a model; and through its syntax, by allowing for logical languages in which formulas can be infinite in length or in which the number of symbols is uncountable.Truth Definitions - 1998 - Bulletin of Symbolic Logic 4 (3).
    Download  
     
    Export citation  
     
    Bookmark  
  • World theory.Ovidiu Cristinel Stoica - unknown
    In this paper a general mathematical model of the World will be constructed. I will show that a number of important theories in Physics are particularizations of the World Theory presented here. In particular, the worlds described by the Classical Mechanics, the Theory of Relativity and the Quantum Mechanics are examples of worlds according to this definition, but also some theories attempting to unify gravity and QM, like String Theory. This mathematical model is not a Unified Theory of Physics, it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extending strongly continuous functions between apartness spaces.Luminiţa Simona Vîţă - 2006 - Archive for Mathematical Logic 45 (3):351-356.
    A natural extension theorem for strongly continuous mappings, the morphisms in the category of apartness spaces, is proved constructively.
    Download  
     
    Export citation  
     
    Bookmark  
  • Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does Choice Really Imply Excluded Middle? Part I: Regimentation of the Goodman–Myhill Result, and Its Immediate Reception†.Neil Tennant - 2020 - Philosophia Mathematica 28 (2):139-171.
    The one-page 1978 informal proof of Goodman and Myhill is regimented in a weak constructive set theory in free logic. The decidability of identities in general (⁠|$a\!=\!b\vee\neg a\!=\!b$|⁠) is derived; then, of sentences in general (⁠|$\psi\vee\neg\psi$|⁠). Martin-Löf’s and Bell’s receptions of the latter result are discussed. Regimentation reveals the form of Choice used in deriving Excluded Middle. It also reveals an abstraction principle that the proof employs. It will be argued that the Goodman–Myhill result does not provide the constructive set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can You Add Power‐Sets to Martin‐Lof's Intuitionistic Set Theory?Maria Emilia Maietti & Silvio Valentini - 1999 - Mathematical Logic Quarterly 45 (4):521-532.
    In this paper we analyze an extension of Martin-Löf s intensional set theory by means of a set contructor P such that the elements of P are the subsets of the set S. Since it seems natural to require some kind of extensionality on the equality among subsets, it turns out that such an extension cannot be constructive. In fact we will prove that this extension is classic, that is “ true holds for any proposition A.
    Download  
     
    Export citation  
     
    Bookmark   13 citations