Switch to: References

Add citations

You must login to add citations.
  1. Reflections on Skolem's relativity of set-theoretical concepts.Ignagio Jane - 2001 - Philosophia Mathematica 9 (2):129-153.
    In this paper an attempt is made to present Skolem's argument, for the relativity of some set-theoretical notions as a sensible one. Skolem's critique of set theory is seen as part of a larger argument to the effect that no conclusive evidence has been given for the existence of uncountable sets. Some replies to Skolem are discussed and are shown not to affect Skolem's position, since they all presuppose the existence of uncountable sets. The paper ends with an assessment of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Putnam’s model-theoretic argument (meta)reconstructed: In the mirror of Carpintero’s and van Douven’s interpretations.Krystian Jobczyk - 2022 - Synthese 200 (6):1-37.
    In “Models and Reality”, H. Putnam formulated his model-theoretic argument against “metaphysical realism”. The article proposes a meta-reconstruction of Putnam’s model-theoretic argument in the light of two mutually compatible interpretations of it–elaborated by Manuel Garcia-Carpintero and Igor van Douven. A critical reflection on these interpretations and their adequacy for Putnam’s argument allows us to expose new theses coherent with Putnam’s reasoning and indicate new paths to improve this argument for our reconstruction task. In particular, we show that Putnam’s position may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistent Metatheory: New Proofs with Old Tools.Guillermo Badia, Zach Weber & Patrick Girard - 2022 - Journal of Philosophical Logic 51 (4):825-856.
    This paper is a step toward showing what is achievable using non-classical metatheory—particularly, a substructural paraconsistent framework. What standard results, or analogues thereof, from the classical metatheory of first order logic can be obtained? We reconstruct some of the originals proofs for Completeness, Löwenheim-Skolem and Compactness theorems in the context of a substructural logic with the naive comprehension schema. The main result is that paraconsistent metatheory can ‘re-capture’ versions of standard theorems, given suitable restrictions and background assumptions; but the shift (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructive validity is nonarithmetic.Charles McCarty - 1988 - Journal of Symbolic Logic 53 (4):1036-1041.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Markov's principle, isols and Dedekind finite sets.Charles McCarty - 1988 - Journal of Symbolic Logic 53 (4):1042-1069.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark