Switch to: References

Citations of:

Computability theory and linear orders

In I︠U︡riĭ Leonidovich Ershov (ed.), Handbook of recursive mathematics. New York: Elsevier. pp. 138--823 (1998)

Add citations

You must login to add citations.
  1. Automorphisms of η-like computable linear orderings and Kierstead's conjecture.Charles M. Harris, Kyung Il Lee & S. Barry Cooper - 2016 - Mathematical Logic Quarterly 62 (6):481-506.
    We develop an approach to the longstanding conjecture of Kierstead concerning the character of strongly nontrivial automorphisms of computable linear orderings. Our main result is that for any η-like computable linear ordering, such that has no interval of order type η, and such that the order type of is determined by a -limitwise monotonic maximal block function, there exists computable such that has no nontrivial automorphism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable shuffle sums of ordinals.Asher M. Kach - 2008 - Archive for Mathematical Logic 47 (3):211-219.
    The main result is that for sets ${S \subseteq \omega + 1}$ , the following are equivalent: The shuffle sum σ(S) is computable.The set S is a limit infimum set, i.e., there is a total computable function g(x, t) such that ${f(x) = \lim inf_t g(x, t)}$ enumerates S.The set S is a limitwise monotonic set relative to 0′, i.e., there is a total 0′-computable function ${\tilde{g}(x, t)}$ satisfying ${\tilde{g}(x, t) \leq \tilde{g}(x, t+1)}$ such that ${{\tilde{f}(x) = \lim_t \tilde{g}(x, t)}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Degree spectra of relations on structures of finite computable dimension.Denis R. Hirschfeldt - 2002 - Annals of Pure and Applied Logic 115 (1-3):233-277.
    We show that for every computably enumerable degree a > 0 there is an intrinsically c.e. relation on the domain of a computable structure of computable dimension 2 whose degree spectrum is { 0 , a } , thus answering a question of Goncharov and Khoussainov 55–57). We also show that this theorem remains true with α -c.e. in place of c.e. for any α∈ω∪{ω} . A modification of the proof of this result similar to what was done in Hirschfeldt (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Filters on Computable Posets.Steffen Lempp & Carl Mummert - 2006 - Notre Dame Journal of Formal Logic 47 (4):479-485.
    We explore the problem of constructing maximal and unbounded filters on computable posets. We obtain both computability results and reverse mathematics results. A maximal filter is one that does not extend to a larger filter. We show that every computable poset has a \Delta^0_2 maximal filter, and there is a computable poset with no \Pi^0_1 or \Sigma^0_1 maximal filter. There is a computable poset on which every maximal filter is Turing complete. We obtain the reverse mathematics result that the principle (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Linear extensions of partial orders and reverse mathematics.Emanuele Frittaion & Alberto Marcone - 2012 - Mathematical Logic Quarterly 58 (6):417-423.
    We introduce the notion of τ-like partial order, where τ is one of the linear order types ω, ω*, ω + ω*, and ζ. For example, being ω-like means that every element has finitely many predecessors, while being ζ-like means that every interval is finite. We consider statements of the form “any τ-like partial order has a τ-like linear extension” and “any τ-like partial order is embeddable into τ” . Working in the framework of reverse mathematics, we show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reverse mathematics and the equivalence of definitions for well and better quasi-orders.Peter Cholak, Alberto Marcone & Reed Solomon - 2004 - Journal of Symbolic Logic 69 (3):683-712.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Equivalence between Fraïssé’s conjecture and Jullien’s theorem.Antonio Montalbán - 2006 - Annals of Pure and Applied Logic 139 (1):1-42.
    We say that a linear ordering is extendible if every partial ordering that does not embed can be extended to a linear ordering which does not embed either. Jullien’s theorem is a complete classification of the countable extendible linear orderings. Fraïssé’s conjecture, which is actually a theorem, is the statement that says that the class of countable linear ordering, quasiordered by the relation of embeddability, contains no infinite descending chain and no infinite antichain. In this paper we study the strength (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Π10 classes and orderable groups.Reed Solomon - 2002 - Annals of Pure and Applied Logic 115 (1-3):279-302.
    It is known that the spaces of orders on orderable computable fields can represent all Π10 classes up to Turing degree. We show that the spaces of orders on orderable computable abelian and nilpotent groups cannot represent Π10 classes in even a weak manner. Next, we consider presentations of ordered abelian groups, and we show that there is a computable ordered abelian group for which no computable presentation admits a computable set of representatives for its Archimedean classes.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Limitwise monotonic functions, sets, and degrees on computable domains.Asher M. Kach & Daniel Turetsky - 2010 - Journal of Symbolic Logic 75 (1):131-154.
    We extend the notion of limitwise monotonic functions to include arbitrary computable domains. We then study which sets and degrees are support increasing limitwise monotonic on various computable domains. As applications, we provide a characterization of the sets S with computable increasing η-representations using support increasing limitwise monotonic sets on ℚ and note relationships between the class of order-computable sets and the class of support increasing limitwise monotonic sets on certain domains.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Δ20-categoricity in Boolean algebras and linear orderings.Charles F. D. McCoy - 2003 - Annals of Pure and Applied Logic 119 (1-3):85-120.
    We characterize Δ20-categoricity in Boolean algebras and linear orderings under some extra effectiveness conditions. We begin with a study of the relativized notion in these structures.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On self-embeddings of computable linear orderings.Rodney G. Downey, Carl Jockusch & Joseph S. Miller - 2006 - Annals of Pure and Applied Logic 138 (1):52-76.
    The Dushnik–Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine computability-theoretical aspects of this classical theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Undecidable Linear Order That Is $n$-Decidable for All $n$.John Chisholm & Michael Moses - 1998 - Notre Dame Journal of Formal Logic 39 (4):519-526.
    A linear order is -decidable if its universe is and the relations defined by formulas are uniformly computable. This means that there is a computable procedure which, when applied to a formula and a sequence of elements of the linear order, will determine whether or not is true in the structure. A linear order is decidable if the relations defined by all formulas are uniformly computable. These definitions suggest two questions. Are there, for each , -decidable linear orders that are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations